Simulation#

In this page we will simulate 100 individuals and create the discrete probabilities. I will plot some graph using the data.

Warning

Remember that dhr.func is the sintax that calls the file with the functions see before.

Packages#

import numpy as np
import pandas as pd
import dhr_functions as dhr

Using the model solution#

Before simulating the data and the probabilities, I will run the model solution

probs_w, _, _, _, _, vf = dhr.model_solution()

Simulation#

Parameters#

We need some parameters to run our simulation:

  • Number of simulation

  • μ (value of leisure)

  • Non pecuniary cost

  • Total days in the month

  • Shock mean

  • Shock standart deviation

  • Seed to save the random results

sim_nb   = 100
mu       = 4
P        = 3
Tm       = 30
eps_mean = 0 
eps_sd   = 1
np.random.seed(1996)

Creating Matrices#

Now I will create the matrices to store the simulation results. Each colum stores the individual simulated data for all the years

# Store leisure decision
L_dec = np.empty((Tm,sim_nb))
L_dec[:] = np.nan         

# Store days worked until t 
d_dec = np.empty((Tm,sim_nb))
d_dec[:] = np.nan         

# Store days worked in t + 1
d1_dec = np.empty((Tm,sim_nb))
d1_dec[:] = np.nan         

# Store ϵ received in t 
e_dec = np.empty((Tm,sim_nb))
e_dec[:] = np.nan         

# Utility gain from optimal choice
u_dec = np.empty((Tm,sim_nb))
u_dec[:] = np.nan         

Simulating the individuals#

We will simulated our indiviuals follow these steps:

  1. Draw the shock

  2. Compute the value for working and leisure

  3. Pick the max

  4. Store the data

for s in range(sim_nb):
    
    # Every individual starts with no days worked
    d = 0
    
    for t in range(30):
        
        # Store days worked until t
        d_dec[t,s] = d
        
        # Need condition for last period
        if t != 29:
            
            # 1. Draw shock
            e_shock = np.random.normal(loc = eps_mean, scale = eps_sd)
            
            # 2. Compute values for decisions: Using Value function from model solution
            w = vf[t+1,d+1]
            l = e_shock + mu - P + vf[t+1,d]
            
            # 3. Pick optmal choice
            dec = max(w,l)
            u = dec
            if dec == w:
                dec = 0
            else:
                dec = 1
            if dec == 0:
                d += 1
            else:
                pass
        else:
            
            # 1. Draw shock
            e_shock = np.random.normal(eps_mean, eps_sd)
            
            # 2. Compute values for decisions
            w = dhr.income_g(t, d+1)
            l = e_shock + dhr.income_g(t, d)
            
            # 3. Pick optmal choice
            dec = max(w,l)
            u = dec
            if dec == w:
                dec = 0 
            else:
                dec = 1
            if dec == 0:
                d += 1
            else:
                pass
                    
        # 4. Store results
        L_dec[t,s] = dec
        d1_dec[t,s] = d
        e_dec[t,s] = e_shock
        u_dec[t,s] = u

Now we will create a dataframe using the simulated matrices

simulated_data = []
for i in range(sim_nb):
    s = {}
    s['id'] = i
    s['t']  = list(range(1,31))
    s['d+1']  = list(d1_dec[:,i])
    s['d']    = list(d_dec[:,i])
    s['L']  = list(L_dec[:,i])
    s['eps']  = list(e_dec[:,i])
    s['U']  = list(u_dec[:,i])
    s = pd.DataFrame(s)
    simulated_data.append(s)
    
simulated_data = pd.concat(simulated_data, axis = 0).reset_index().drop('index', axis = 1)

Discrete probabilities#

Using the model solution, we can create the discrete probabilities matrix for the days worked. First, create a matrix to store the results.

prob_sim = np.zeros((Tm,Tm))

We will start with every individual in the same position, wich means a mass of 1 in t = 0 and d = 0

prob_sim[0,0] = 1 #P(t = 1, d = 0)

To compute the discrete probability matrix, we will use two things:

  • The probability of working in t conditional on d (from the model solution)

  • The mass of teachers in t-1 and with an specific value of d

for t in range(1,Tm):
    for d in range(t):
        prob_mass = prob_sim[t-1,d] # Mass of teacher in t = t-1, d = d
        prob_w_t_d = probs_w[t-1,d] # P(L = 0 | t = t-1, d = d)
        if np.isnan(prob_w_t_d):    # Maybe is not possible, but I defined as nan in the model solution
            prob_w_t_d = 0
        else:
            pass
        prob_sim[t,d]   = prob_sim[t,d] + (1-prob_w_t_d)*prob_mass # Adding the 0 to the teachers proportion multiplied by the conditional prob to leisure
        prob_sim[t,d+1] = prob_sim[t,d+1] + prob_w_t_d*prob_mass   # Same as (214) but now with prob to work

Functions#

The simulation and the discrete probabilities are also included in the functions file

_, L_dec, d_dec, d1_dec, e_dec, u_dec, _= dhr.simulate_data()
L_dec

array([[0., 0., 1., ..., 0., 1., 0.],
       [0., 0., 0., ..., 1., 0., 1.],
       [1., 0., 0., ..., 0., 0., 1.],
       ...,
       [1., 0., 0., ..., 1., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.]])

The probability function

prob_sim = dhr.discrete_probs()
prob_sim

array([[1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [3.10539517e-01, 6.89460483e-01, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [9.74900563e-02, 4.26097965e-01, 4.76411979e-01, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [3.14817833e-02, 1.98020433e-01, 4.41128340e-01, 3.29369444e-01,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [1.08830020e-02, 8.23818867e-02, 2.72472778e-01, 4.06523682e-01,
        2.27738652e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [4.32965468e-03, 3.27384767e-02, 1.40485684e-01, 3.13638823e-01,
        3.51335800e-01, 1.57471563e-01, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [2.14188900e-03, 1.30910032e-02, 6.54905564e-02, 1.93657518e-01,
        3.25216996e-01, 2.91516520e-01, 1.08885517e-01, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [1.33253009e-03, 5.65089524e-03, 2.88472208e-02, 1.04741620e-01,
        2.34163399e-01, 3.14806919e-01, 2.35167186e-01, 7.52902289e-02,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [9.74783398e-04, 2.87883245e-03, 1.24903214e-02, 5.19490940e-02,
        1.44553613e-01, 2.59021331e-01, 2.90232632e-01, 1.85839027e-01,
        5.20603651e-02, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [7.75226687e-04, 1.82603897e-03, 5.61942476e-03, 2.43485918e-02,
        8.03688594e-02, 1.79832278e-01, 2.68645643e-01, 2.58022875e-01,
        1.44563275e-01, 3.59977881e-02, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [6.38694586e-04, 1.39384847e-03, 2.85243715e-03, 1.10975903e-02,
        4.14526120e-02, 1.10999687e-01, 2.07223959e-01, 2.65367033e-01,
        2.23016273e-01, 1.11066745e-01, 2.48911191e-02, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [5.33342519e-04, 1.18264017e-03, 1.76748043e-03, 5.12521654e-03,
        2.02617449e-02, 6.28327032e-02, 1.40670666e-01, 2.25160900e-01,
        2.52300065e-01, 1.88475636e-01, 8.44783298e-02, 1.72112745e-02,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [4.47550768e-04, 1.04912475e-03, 1.34544767e-03, 2.56762097e-03,
        9.58156291e-03, 3.32977203e-02, 8.68212827e-02, 1.66734516e-01,
        2.33533929e-01, 2.32607814e-01, 1.56388563e-01, 6.37239181e-02,
        1.19009502e-02, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [3.76209203e-04, 9.43792709e-04, 1.17508030e-03, 1.52220268e-03,
        4.51531817e-03, 1.67801702e-02, 4.97727466e-02, 1.11469620e-01,
        1.87343723e-01, 2.33248135e-01, 2.09091313e-01, 1.27798042e-01,
        4.77345871e-02, 8.22906034e-03, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [3.16429117e-04, 8.50627366e-04, 1.09389513e-03, 1.11757663e-03,
        2.23473674e-03, 8.16353267e-03, 2.69072772e-02, 6.87959366e-02,
        1.34877835e-01, 2.01506826e-01, 2.25794845e-01, 1.84009287e-01,
        1.03095460e-01, 3.55456491e-02, 5.69008632e-03, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [2.66201740e-04, 7.64927002e-04, 1.03986882e-03, 9.74255066e-04,
        1.26057401e-03, 3.91527448e-03, 1.38799743e-02, 3.98126456e-02,
        8.91814643e-02, 1.55435091e-01, 2.09000582e-01, 2.12902432e-01,
        1.59044334e-01, 8.22538079e-02, 2.63340873e-02, 3.93448109e-03,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [2.23961565e-04, 6.85527837e-04, 9.91106189e-04, 9.31133039e-04,
        8.72496559e-04, 1.92341723e-03, 6.90858783e-03, 2.18545281e-02,
        5.50394007e-02, 1.09622611e-01, 1.71962031e-01, 2.10204449e-01,
        1.96285187e-01, 1.35351574e-01, 6.50004749e-02, 1.94229679e-02,
        2.72054598e-03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [1.88427622e-04, 6.12224435e-04, 9.40993342e-04, 9.21067096e-04,
        7.38240977e-04, 1.03668648e-03, 3.36703760e-03, 1.14841160e-02,
        3.20848393e-02, 7.18792736e-02, 1.28856606e-01, 1.83761252e-01,
        2.05909834e-01, 1.77484880e-01, 1.13645619e-01, 5.09381031e-02,
        1.42696438e-02, 1.88115542e-03, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [1.58532363e-04, 5.44969210e-04, 8.88349568e-04, 9.17429722e-04,
        7.09400101e-04, 6.68382542e-04, 1.65027905e-03, 5.82532857e-03,
        1.78275580e-02, 4.43609785e-02, 8.94587988e-02, 1.45796750e-01,
        1.90594921e-01, 1.97139669e-01, 1.57788072e-01, 9.42979965e-02,
        3.96245069e-02, 1.04473301e-02, 1.30074836e-03, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [1.33380340e-04, 4.83655417e-04, 8.33741734e-04, 9.10605580e-04,
        7.20326215e-04, 5.35396157e-04, 8.57521618e-04, 2.88158788e-03,
        9.51041560e-03, 2.60108670e-02, 5.82751078e-02, 1.06841172e-01,
        1.59618668e-01, 1.92614221e-01, 1.84998224e-01, 1.38199000e-01,
        7.74291726e-02, 3.06222526e-02, 7.62526625e-03, 8.99418659e-04,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [1.12218846e-04, 4.28081898e-04, 7.78169588e-04, 8.97757995e-04,
        7.42631332e-04, 5.06287477e-04, 5.13927832e-04, 1.41494749e-03,
        4.90216490e-03, 1.45962305e-02, 3.59651380e-02, 7.32595616e-02,
        1.23125010e-01, 1.69799035e-01, 1.90264400e-01, 1.70558906e-01,
        1.19449227e-01, 6.29874807e-02, 2.35268190e-02, 5.55008979e-03,
        6.21914240e-04, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [9.44147367e-05, 3.77968520e-04, 7.22621351e-04, 8.78619286e-04,
        7.64669319e-04, 5.20718333e-04, 3.81879446e-04, 7.15866572e-04,
        2.45856364e-03, 7.88518496e-03, 2.11885069e-02, 4.74718676e-02,
        8.86449244e-02, 1.37525699e-01, 1.76113368e-01, 1.84184516e-01,
        1.54789652e-01, 1.02028659e-01, 5.08123853e-02, 1.79803232e-02,
        4.02956263e-03, 4.30030351e-04, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [7.94353427e-05, 3.32981222e-04, 6.67939880e-04, 8.53837219e-04,
        7.82017791e-04, 5.51069787e-04, 3.47405129e-04, 4.00830898e-04,
        1.21299629e-03, 4.12114275e-03, 1.19882996e-02, 2.92979103e-02,
        6.01753012e-02, 1.03726478e-01, 1.49431443e-01, 1.78603620e-01,
        1.75115097e-01, 1.38510905e-01, 8.62265158e-02, 4.06824616e-02,
        1.36759899e-02, 2.91897180e-03, 2.97349845e-04, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [6.68325082e-05, 2.92754836e-04, 6.14796929e-04, 8.24339996e-04,
        7.93250414e-04, 5.85051932e-04, 3.56876089e-04, 2.72244172e-04,
        6.02743762e-04, 2.09362088e-03, 6.54598525e-03, 1.73289643e-02,
        3.88247445e-02, 7.36124742e-02, 1.17828176e-01, 1.58432155e-01,
        1.77527280e-01, 1.63821329e-01, 1.22379208e-01, 7.21744654e-02,
        3.23499513e-02, 1.03570460e-02, 2.11010302e-03, 2.05606256e-04,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [5.62291796e-05, 2.56911072e-04, 5.63703259e-04, 7.91094888e-04,
        7.98161664e-04, 6.17408843e-04, 3.84850273e-04, 2.32582094e-04,
        3.17916286e-04, 1.04005294e-03, 3.46328320e-03, 9.87293907e-03,
        2.39612194e-02, 4.95580650e-02, 8.72546779e-02, 1.30356028e-01,
        1.64323718e-01, 1.73298480e-01, 1.51034879e-01, 1.06889160e-01,
        5.98871079e-02, 2.55643144e-02, 7.81255451e-03, 1.52249427e-03,
        1.42169008e-04, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [4.73081249e-05, 2.25071835e-04, 5.15029067e-04, 7.55018011e-04,
        7.97040483e-04, 6.45981878e-04, 4.19334622e-04, 2.35002898e-04,
        1.95287343e-04, 5.11168434e-04, 1.78122067e-03, 5.44090264e-03,
        1.42197024e-02, 3.18588072e-02, 6.11888852e-02, 1.00553062e-01,
        1.40836335e-01, 1.67092769e-01, 1.66429323e-01, 1.37414268e-01,
        9.23872628e-02, 4.92972377e-02, 2.00872301e-02, 5.87183481e-03,
        1.09661211e-03, 9.83045319e-05, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [3.98024423e-05, 1.96868689e-04, 4.69025829e-04, 7.16942504e-04,
        7.90373397e-04, 6.69948119e-04, 4.54847362e-04, 2.56748178e-04,
        1.52370609e-04, 2.55970625e-04, 8.92918383e-04, 2.91036994e-03,
        8.14949192e-03, 1.96620284e-02, 4.09082372e-02, 7.33342115e-02,
        1.12981964e-01, 1.48937431e-01, 1.66888071e-01, 1.57477089e-01,
        1.23521747e-01, 7.90923725e-02, 4.02848538e-02, 1.57012470e-02,
        4.39849935e-03, 7.88596749e-04, 6.79738936e-05, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00],
       [3.34875757e-05, 1.71949304e-04, 4.25846669e-04, 6.77609221e-04,
        7.78723200e-04, 6.89054222e-04, 4.88974228e-04, 2.86472375e-04,
        1.48850998e-04, 1.40259962e-04, 4.37168841e-04, 1.51537792e-03,
        4.52683574e-03, 1.17015416e-02, 2.62172814e-02, 5.09128675e-02,
        8.55670315e-02, 1.24075575e-01, 1.54475877e-01, 1.63984430e-01,
        1.47000592e-01, 1.09813617e-01, 6.71187962e-02, 3.26998883e-02,
        1.22139251e-02, 3.28470889e-03, 5.66257547e-04, 4.70013958e-05,
        0.00000000e+00, 0.00000000e+00],
       [2.81745959e-05, 1.49981623e-04, 3.85564518e-04, 6.37665769e-04,
        7.62680936e-04, 7.03280677e-04, 5.20717970e-04, 3.18600358e-04,
        1.64789954e-04, 9.53476288e-05, 2.09306723e-04, 7.69836817e-04,
        2.44452570e-03, 6.74050182e-03, 1.61801922e-02, 3.38367967e-02,
        6.16049780e-02, 9.74483628e-02, 1.33455209e-01, 1.57409622e-01,
        1.58744278e-01, 1.35527014e-01, 9.66406620e-02, 5.64992711e-02,
        2.63791996e-02, 9.45892670e-03, 2.44596460e-03, 4.06047532e-04,
        3.24997008e-05, 0.00000000e+00],
       [2.37045482e-05, 1.30656298e-04, 3.48188054e-04, 5.97668581e-04,
        7.42846623e-04, 7.12704840e-04, 5.49682503e-04, 3.50667379e-04,
        1.89192783e-04, 8.81277590e-05, 9.79436430e-05, 3.82251298e-04,
        1.28654120e-03, 3.76999560e-03, 9.65300066e-03, 2.16279175e-02,
        4.24043230e-02, 7.26640077e-02, 1.08557827e-01, 1.40846045e-01,
        1.57821414e-01, 1.51580881e-01, 1.23529115e-01, 8.42555360e-02,
        4.72060984e-02, 2.11586603e-02, 7.29516463e-03, 1.81657361e-03,
        2.90794004e-04, 2.24723231e-05]])

Plots#

Plotting histories simulated#

dhr.simulation_plot()

../../_images/simulation_histories_5_sim_control.png

Plotting probability of working, probability of days worked and EVs#

dhr.t_graphs()

../../_images/EVs.png
../../_images/prob_days_worked.png
../../_images/prob_working.png