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1 Introduction

From 2001 to 2022, there was a total of 459 Mha of tree cover loss globally (12% decrease) and

195 Gt of CO emissions. Related to it, according to Watson, Schalatek, and Evéquoz (2020)

deforestation accounts for 12% - 20% of the global Greenhouse gas emissions (GHG). These

gases include different types of pollutants such as CO2, NO2, and SO2, which contribute to

temperature rise and air pollution. Another negative side of these gases is the impact on hu-

man development outcomes, such as health, mortality, and cognitive development. To reduce

deforestation rates, policymakers have been designing different types of interventions to in-

centivize pro-environmental behavior, which needs to compensate for forgone income due to

deforestation activities (Jayachandran 2022; Jack et al. 2022). This is especially relevant in re-

gions where a considerable share of households are dependent on forest-related activities such

as wood product production, charcoal, or cleaning forests for subsistence agriculture (Cisneros

et al. 2022; Correa et al. 2020).

In this paper, I use a REDD+ project implemented by USAID in Eastern Zambia to as-

sess the impact of conservation policies on deforestation in the context of communal-owned

land. To investigate the impacts of the program in Eastern Zambia I merge administrative and

geospatial information to create a panel dataset with 1kmx1km blocks of information from

2001 to 2023. I use information from USAID on the new protected areas defined by the pro-

gram and information on contracted chiefdoms to merge with rich satellite data on tree cover

baseline and loss from Hansen et al. (2013). I also collected multiple geographical informa-

tion such as land agriculture productivity, settlement location, altitude, and distance to in-

frastructure. I merge this information with historical pre-colonial chiefdom boundaries from

Baldwin (2013) to perform across and within analysis on these chiefdoms. I use differences

in differences strategy to identify the effect of the program on annual tree cover loss in con-

tracted Chiefdoms. I identify the overall effect by comparing blocks in contracted chiefdom

with non-contracted chiefdom. I also allow for heterogeneous effects within treated chiefdoms

by splitting blocks into protected and non-protected areas. This allows me to verify if there

are within chiefdom differential effects between these two groups and possible leakage due to

different conservation incentives in these areas. Finally, I used household and satellite data to

construct measures of forest dependence and institutional norms to investigate how these two

dimensions may impact program effects.
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Zambia has the 4th largest forest in Africa and has been facing a worrying increase in

deforestation patterns in the last few years. The country has the 12th highest deforestation

rate in the world, and 4th in per capita terms (Global Forest Watch). These increased threats

reduced Zambian tree cover by approximately 9.4 % in the last 20 years, mainly driven by land

clearing for agriculture, wood extraction, and charcoal production (USAID 2016). In 2015, US-

AID implemented the Community Forests Project (CFP) in partnership with BioCarbon Part-

ners signing contracts with chiefdom to conserve areas within their boundaries. The protected

areas serve as a benchmark for carbon offsets that are sold and generate revenues that are used

to invest in community projects within contracted Chiefdoms.

Even though there is extensive literature analyzing different conservation policies, how

to better design conservation policies is an open question as multiple factors can influence the

effectiveness of these policies (Balboni et al. 2023; Jayachandran 2022). For instance, take-up

is a crucial element for the success of these initiatives, but what impacts conservation takeup

is still lacking in evidence. Papers have shown how institutional dimensions such as trust

in contract realization, corruption, and political representation can influence program takeup

and effectiveness (Burgess et al. 2012; Cisneros and Kis-Katos 2022; Jack et al. 2022; Gulzar,

Lal, and Pasquale 2024). Another relevant dimension is land property rights, as agents’ incen-

tives to protection are closely related to who will receive the benefits of conservation efforts

(Baragwanath and Bayi 2020, Sze et al. 2022 Baland et al. 2010). The amount of the financial

incentives is an important aspect of these programs considering the compensation for the op-

portunity costs of not deforesting. Land usage models incorporate the maximization process

in choosing to engage in environmentally destructive activities, such as the benefits of forests

for communities or the benefits of land change for agriculture production. This cost of not

deforesting can be related to different aspects such as forest income dependence, and skill for-

mation cost to work with non-forest services. The long-term takeup is also relevant for the

sustainability element of PES programs. These projects demand considerable funding to com-

pensate agents for pro-environmental behaviors, the end of financial support may lead agents

to return to activities that will destroy the environment which questions the long-term effects

of these interventions.

I aim to contribute to the literature in the following dimensions. First, I am the first to

evaluate this project, which is the biggest REDD+ project in the African continent. Second I

aim to add the literature on understanding how community pay-for-performance (PES) pro-
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grams can incentivize conservation in the context of communal lands (Sims 2010; Malan et

al. 2024). Communal land is an important setting as this is a feature present in countries where

land ownership is related to historical or ethnic origins, such as chiefdom present in African

countries or Native land demarcations in Latin America. Third, I investigate selection bias in

the designation of protected areas in the context of chiefdom-owned lands. The endogenous

nature of the REDD+ area designation allows me to understand how local authorities may

strategically allocate locations that are less costly to conserve. Fourth, I explore the take up of

the program by exploring how forest dependence and social norms may impact the effects and

selection into the program. Using household survey data, I aim to construct indexes for forest

dependence and institutional norms. These indexes will evaluate whether the program’s ef-

fectiveness and protection selection varies based on the extent to which communities rely on

forest activities for income or nutrition and the influence of local authorities on the program’s

implementation (Jayachandran 2022; Acemoglu, Reed, and Robinson 2014). Fifth, I contribute

to the methodological discussion on how to measure the impacts of conservation policies. By

comparing the official program counterfactual with my control sample, I explore how pro-

gram effects are sensitive to this choice. I also show how measures are sensitive to empirical

strategy choice, following Chen and Roth (2024) in the discussion of zero-based outcomes.

These decisions are important in the context of conservation policies as the estimated benefits

of these interventions can be translated into revenue for communities, and costs for sponsors.

Therefore is important to rigorously measure the benefits of conservation programs.

The results of the paper suggest no overall effect on chiefdom annual tree cover loss, but

composition effects between protected areas and non-protected areas. In the chiefdom level

analysis, I found that there is no statistical difference in annual tree cover loss in the contracted

chiefdom post policy. This can be explained by the composition effects happening within

contracted chiefdoms. Protected areas do face a decrease in tree cover loss, but non-protected

areas increase deforestation after the policy. This highlights the importance of considering

incentives that are created when conservation area policies are established. The fact that the

program’s pay-for-performance is measured within the protected areas may distort agents’

incentives to deforest in non-protected areas. The income received from the carbon market can

fund chiefdom development which might be translated into more deforestation activities in

non-protected areas. However, as proposed by Chen and Roth (2024) these results are sensitive

to unit scaling and differ when the outcome variable is measured inm2 or ha. Additionally, the
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selection analysis shows that blocks designated to be protected were on average less deforested

and more remote. This is in line with previous papers that have documented selection bias on

conservation land selection (Cisneros et al. 2022; Giudice et al. 2019).

The rest of this paper is organized as follows. Section 2 provides additional information

on the CFP program and institutional background in Zambia. Section 3 describes the datasets

used in the analysis and presents summary statistics for the blocks across not contracted Chief-

doms, contracted Chiefdoms, Protected Areas, and not protected areas. Section 4 outlines the

empirical strategy and Section 5 presents the results. Finally, the paper concludes with final

remarks in Section 6.

2 Institutional Background

In 2015, USAID launched the Community Forests Program (CFP) in Eastern Zambia aiming

to reduce gas emissions due to deforestation. The project cost approximately 16 million USD

dollars to be implemented and was done in partnership with BioCarbon Partners, a firm spe-

cializing in forest conservation projects. The project aimed to protect a natural corridor called

the Luangwa Valley, where there is an important biodiversity presence (Figure 2). According

to USAID (2019), the intervention successfully institutionalized a minimum of 700,000 pro-

tected hectares within the valley. They aimed to create a long-term contract relationship with

Chiefdoms that committed to protecting areas within the corridor. Using estimations of stored

carbon and avoided emissions due to the intervention in protected areas, the firm sold car-

bon offsets in the voluntary market. The income obtained from carbon offsets is reinvested in

infrastructure and mitigation activities in communities within the contracted chiefdom.

The project took place in Eastern Zambia, where the majority of the households lack

service access and are socioeconomically vulnerable. According to USAID (2016), 87.4 % of the

population live in rural areas and do not have access to electricity, public water, or sanitation.

Subsistence agriculture is an important component of household income, composing up to

64 % of it. Another important source of income is charcoal production, which is used for

electricity, forest product production, and cooking by Zambian families. These families are

economically vulnerable with 75 % of them living with less than $1.5 per day, and 60 % live

in extreme poverty. This highlights how these communities are dependent on forest usage for

income, household activities, and nutrition, a clear challenge to the program’s success.

The contract was established at the chiefdom level in partnership with chiefs, govern-
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ment agencies, and local authorities. The chiefdom REDD+ protected areas (Figure 1) were

delimited after an extensive interaction with local communities and authorities to determine

what areas would be protected and measured in other to measure the carbon offsets. These

contracts have a period of 30 years and aim to create a long-term relationship with chiefdoms.

During these years, the program committed to selling carbon-verified credits and reinvesting

the revenue in projects that would benefit the communities. The carbon verification was estab-

lished in 2019 and sold carbon-verified credits corresponding to the 5 years from the beginning

of the program (2015-2019). After that, the carbon verification will happen in a year manner

until the end of the 30-year contract in 2045. This component can potentially lead to a long-

term incentive to conserve the protected areas, as the conservation revenue will keep being

reinvested into communities.

To incentivize conservation in non-protected areas, the program financed basic infras-

tructure and livelihood income alternatives. The funds for the project are transferred to Chief-

doms which decide the allocation of these resources through local administration boards called

Community Resources Board (CRBs) and Village Action Groups (VGAs). The chiefdom au-

thorities then decided how to invest the resources in their communities. The program re-

stricted the investments to the provision of physical infrastructure or financing of mitigation

activities that aimed to create alternatives to forest products and non-sustainable activities such

as crop burning.

In terms of investments in infrastructure, the program financed multiple types of phys-

ical benefits. For example, building schools, water distribution systems, boats for Ecotourism,

and trucks for forest monitoring. These resources were provided to the communities con-

ditional on local demands and chiefdom negotiations. For livelihood income alternatives, the

project funds non-forest activities aiming to reduce the need for deforestation and forest degra-

dation. The activities include bee-keeping, Eco-charcoal, Ecotourism, and smart agriculture.

For example, the bee-keeping project distributed hives to communities to allow them to pro-

duce honey without extracting this from forests. Another type of income alternative, the Eco

charcoal technique, allows families to reduce forest degradation by being more selective on

the tree type and tools for its extraction. The agriculture initiative includes techniques that re-

duce land degradation and still allow communities to produce crops but in a more sustainable

manner. It is important to note that there is no additional incentive for conservation in non-

protected areas, these incentives aim to support families in a transition to less forest-dependent
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income sources.

3 Data

3.1 USAID datasets

In 2015, USAID conducted baseline surveys that included 324 villages and 4,343 households

across six different chiefdoms, five of which entered into contracts with the program. The

endline dataset was completed in June 2024 and includes additional information on treatment

types, such as cash transfer amounts and specific activities provided by the program. These

surveys also contain geocoded information regarding the locations of villages and households,

allowing me to map these communities.

Additionally, a structured survey interview was conducted with the headperson (tradi-

tional leader) of each village in the study area. The current headperson, whether at baseline

or endline, was selected for the survey across all 324 communities. Village leaders provided

information on whether the program was implemented in their village and if they received

any benefits from it. For household heads, the survey also asked whether they received bene-

fits from the program, such as participation in program activities, employment in ecotourism,

or infrastructure improvements received by the village. Using this information, I was able to

identify villages that received benefits within treated chiefdoms.

3.2 Zambia data

Chiefdom boundaries For defining the chiefdom boundaries, I use the shapefile from Bald-

win (2013)1, which geocodes the limits of the chiefdoms based on historical pre-colonial maps

of the region. This shapefile provides an essential geographical foundation, ensuring that the

spatial delineation of chiefdoms reflects historically accurate boundaries with cultural and po-

litical significance. By using these geocoded boundaries, I can align contemporary data with

historically rooted geographic divisions.

The geocoded chiefdom boundaries are particularly valuable for examining institu-

tional and environmental outcomes across different regions. These boundaries allow for a

more precise analysis of localized governance and resource management, especially about for-

1. More details on the methodology and sources used to create the chiefdom boundaries can be found in Baldwin
(2015), which provides a deeper exploration of the pre-colonial era maps and their relevance to modern governance
structures.

6



est dependence and agricultural practices. Additionally, they facilitate the integration of spa-

tial data with household-level survey information, enabling a comprehensive examination of

how historical chiefdom boundaries influence present-day outcomes.

Zambia Rural Agricultural Livelihood Survey (RALS) I use the Zambia Rural Agricultural

Livelihoods Survey (RALS) to collect information about households and chiefs. This survey

provides comprehensive data on small and medium-sized households across Zambia. The

dataset is available upon request and requires a confidentiality agreement with the Indaba

Agricultural Policy Research Institute (IAPRI).

The survey was conducted in 2012, 2015, and 2019, serving as a critical tool for under-

standing the dynamics of rural livelihoods, agricultural production, and rural development

challenges in Zambia. RALS is a partnership between the Indaba Agricultural Policy Research

Institute (IAPRI), the Central Statistical Office of Zambia, and the Ministry of Agriculture.

The study sample includes small and medium-scale farmers, i.e., those cultivating less

than 20 hectares, and follows the Zambia 2010 Census sample. The dataset contains 17 sec-

tions in 2019, with detailed information on agricultural practices, household demographics,

livestock ownership, and economic activities. It covers multiple dimensions of rural liveli-

hoods, such as crop production, income sources, and access to essential services like credit

and extension services. The survey’s rich demographic and economic data, combined with

geographic coordinates for household locations, allows for the mapping and construction of

geographical indicators.

The survey includes several sections that gather detailed household information. I will

focus on sections covering household demographics, farmland use, crop sales and production,

off-farm income and remittances, agricultural inputs and outputs, and agricultural informa-

tion and advice. These sections will allow me to extract key data on agricultural production,

forest-related inputs, and chiefdom characteristics. By analyzing this information, I can con-

struct measures of forest dependence and assess institutional outcomes in the chiefdoms.

3.3 Satellite data

Tree coverage data. To measure deforestation rates, I will be using the Global Forest Watch

dataset (Hansen et al. 2013), which provides information for 30m × 30m cells. I will use two

layers from this dataset: Forest tree cover and Tree cover loss.

The first layer is the baseline forest tree cover for 2000, which measures the share of
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forest canopy at the cell level. The dataset defines a tree as any vegetation taller than 5 meters

in height. Following this definition, the author verifies the proportion of a cell covered by forest

canopy—the upper layer or ”roof” of a forest, formed by the crowns of trees—and assigns this

value to the cell. A limitation of this definition is the possibility of including plantations that

meet these criteria, such as timber plantations, in my forest cover measurements. For each cell,

Hansen et al. (2013) reports the share of the unit covered by the forest canopy, ranging from 0

to 100.

The second layer reports tree cover loss at the cell level. According to Hansen et al. (2013),

forest loss is defined as a stand-replacement disturbance or the complete removal of tree

canopy cover at the Landsat pixel scale. This means I am unable to track the gradual degra-

dation of tree cover in a particular cell. For example, if a cell has a 50% tree cover, I cannot

track if this decreases to 20% and then to zero. The Hansen dataset only indicates whether the

cell was fully deforested in a given year. Tree loss at the cell level is recorded as a numerical

variable, indicating the year when the cell lost its tree cover. Values range from 0 to 23, where

0 indicates no loss, and 1 to 23 represents the year of loss starting from 2001. Using the annual

data for tree cover loss, I can create yearly deforestation measures.

One limitation of these measurements is the inability to track tree cover gains after 2000.

This means that if a cell experiences an increase in tree cover after 2000, this will not be re-

flected in my measurements. Additionally, a cell that undergoes multiple changes, such as

deforestation, reforestation, and deforestation again, will not have these variations captured

by my deforestation measure.

Tree cover measurements. Using the tree cover cell information, I can construct two measures

of forested areas: total area forested in hectares and share of area forested in hectares. To

define a particular cell as forested I use a canopy share threshold α. For example, if α is equal

to 10, only cells with more than 10 of their area covered by forest canopy will be considered

to calculate the tree cover measurements. Formally, consider a set of locations i = 1, 2, ...,n

with n being the total number of locations considered. Each location i has j grids defined by

latitude and longitude coordinates latj, longj that are within its location boundaries bi such
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that:

lati,Min ⩽ latj ⩽ lati,Max

and

loni,Min ⩽ lonj ⩽ loni,Max .

(3.1)

Each of these cells j has a canopy share csj,2000 in the baseline year 2000. With this I can define

canopy share csi in a particular location i conditional on canopy share threshold α using the

following:

csi,2000 (α) =

(∑
j∈bi

1{csj,2000 > α}× csj,2000∑
j∈bi

1{j ∈ bi}

)
. (3.2)

Intuitively, this equation states that forest share of a geographical location can be obtained by

a simple ratio. The numerator is the sum of cells share of canopy transformed to hectares for

those with canopy share above a specific threshold α and that overlap with location i bound-

aries. This is also the total forested area in hectares for location i. The denominator is the area

cells in hectares that overlap with a geographic location i.

Deforestation measurements. Using the tree cover and deforestation layers, I can obtain my

annual deforestation rate for a specific geographical unit. I will measure this in two different

ways: total area deforested in hectares and the share of area deforested relative to 2000 baseline

forest cover. I will use the same notation as before but add a new element to incorporate the

possibility of deforestation per year. Let djy be the binary variable equal to 1 if a particular

cell j faces forest loss in year y, zero otherwise. I will also use a threshold α to limit the

cells used in our deforestation measurement. I.e, the relevant cells for the calculation are the

ones with canopy share above a specific threshold α. For example, if I want to calculate the

deforestation rate considering forest canopy share bigger than 10 %, the cell considered in both

the denominator and numerator of the deforestation rate calculation are above this threshold.

Using this notation, I calculate location i newly deforested area in year y (iy). Formally :
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This measures the tree area lost per year within each 1 km block. To consider the initial tree

cover area within each 1 km block, I calculate location i deforestation rate (Diy) conditional on

cell canopy share threshold α as follows:

Diy (α) =

(∑
j∈bi

1{tljy = 1} · 1{csj,2000 > α}× csj,2000∑
j∈bi

1{csj,2000 > α}× csj,2000

)
(3.3)

Dcumu
iy (α) =

∑y
τ=2000

∑
j∈bi

1{tlj,τ = 1}× csj,2000∑
j∈bi

×csj,2000
. (3.4)

In the numerator I use the total area deforested in location i in hectare terms. In the denomina-

tor, I use the total forested area in 2000 in hectare terms. Both the numerator and denominator

consider a threshold α for cell canopy share.

Figure 3 illustrates the raw measures of tree cover in the baseline for the Eastern Region.

Figure 3b maps the tree cover loss in 2023. I also present histograms of measures for 0.1-degree

combination grids for different groups (chiefdom and villages) in section D.9. Following the

literature on tree cover loss (Abman and Lundberg 2024; Cisneros et al. 2022) I will use the

inverse hyperbolic sine (IHS) of hectares of tree cover lost. This transformation has been used

in the deforestation literature due to the presence of zero in the outcome variable, but the

convenience of interpreting the regression in log terms.

Fire data To measure the fire events, I will use the Fire Information for Resource Management

System (FIRMS) from NASA. This dataset provides Near Real-Time (NRT) active fire data us-

ing images from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible

Infrared Imaging Radiometer Suite (VIIRS). The NRT data is available within 3 hours of satel-

lite observations, except in the US and Canada, which have real-time data. The resolution is

375 m, and the data has been available since January 20, 2012.

The relevant information2 for our research per cell includes the centered coordinates of

the fire event in latitude and longitude for the 375 m pixel; the brightness temperature, which

reflects the temperature of the fire pixel measured in Kelvin; and the date and time of fire

recording.

2. More information on the available data per cell can be found in Appendix A.2
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3.4 Summary Statistics

The summary table 1 provides statistics for blocks in the Luangwa Corridor Game Manage-

ment Areas (GMAs), splitting these observations into four groups. The first column presents

statistics for cells located within not contracted Chiefdoms. The second presents observations

within contracted Chiefdoms, located in protected (PA) or non-protected areas (NPA), which

are shown separately in columns 3 and 4.

The first row shows the average block canopy share in 2000, indicating the average

percentage of tree canopy cover in each block by different location groups. Blocks do not differ

substantially in terms of tree cover across groups, non contracted chiefdoms have 2% more tree

cover share per block. Within contracted chiefdoms, protected areas have 1.3 % more tree cover

compared to not protected areas. Similarly, the tree cover in 2000, measured in hectares, shows

that non-contracted blocks averaged 34.58 hectares of tree cover per cell, whereas contracted

chiefdom had 31.64 hectares. This suggests that blocks are not substantially different in terms

of the density of trees, i.e., protected areas or contracted chiefdoms are not more forested areas

in comparison to non-contracted areas.

However, a notable difference between the two regions appears in the average annual

tree cover loss between 2001 and 2014. Non-contracted Chiefdom deforested on average 100

m2 more relative to Chiefdoms included in the program. Another considerable difference ex-

ists between Protected areas and non-protected areas. PAs deforested areas are on average 5

times less than areas not included in the protection boundaries. These simple comparisons

reveal that the program targets low deforestation areas, potentially influenced by the local

authorities’ endogenous choice of where to protect trees. This is related to the papers on for-

est protection that found selection bias in conservation areas (Giudice et al. 2019; Cisneros et

al. 2022).

In terms of geographical characteristics, non-contracted chiefdoms are situated slightly

higher, with an average altitude of 813.87 meters, compared to 707.82 meters in participant

chiefdoms. Locations show similar potential for maize yield varying from approximately 3000

kg/ha to 3100 kg/ha across all groups.

Protected areas (PAs) are significantly more remote compared to non-protected areas

when considering their proximity to human settlements, roads, and energy networks. On

average, blocks within PAs are located 3.5 km, 4.5 km, and 20 km farther from these infrastruc-
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tures, respectively. These differences in remoteness are particularly relevant to understanding

deforestation dynamics, as infrastructure availability has been shown to play a crucial role in

facilitating agricultural activities and contributing to tree cover loss (Gollin and Wolfersberger

2024).

In summary, blocks are similar in tree cover density and geographical characteristics but

differ in terms of deforestation patterns and distance to infrastructure. Contracted chiefdom

block annual tree cover loss is smaller in comparison to chiefdom not included in the program,

and Protected Areas tend to experience less deforestation and are more remote compared to

Non-protected areas.

To understand the dynamics, Table 2 shows the correlation between the post-policy

period and three cell groups within treated chiefdoms. First, there is a positive relationship

between overall annual tree cover loss and the post-policy period. The correlation within the

treated chiefdoms suggests possible spillover effects to non-protected areas. Second, there is

a negative correlation between the post-policy period and annual tree cover loss in protected

areas. However, there is a positive relationship between the program and annual tree cover

loss in cells outside the protected areas. A naive comparison between these two groups can

lead to an overestimation of the program’s effects, highlighting the importance of finding a

proper control for estimating the impacts of the program (West et al. 2020).

4 Estimation Strategy

Selection of protected areas Chiefdoms that received the contract chose the protected areas

in partnership with the firm BioCarbon Partners. This decision was made after a validation

process in which chiefdom boundaries and land properties in the region were verified. The

endogenous nature of this decision-making process can lead to selection bias in the protected

areas. Local authorities may have selected locations where deforestation pressure was already

low, as the conservation of these areas influences the revenue received from avoided carbon

emissions. Following Cisneros et al. (2022), I will run a probit model to understand if the choice

of these areas is correlated with cell and chiefdom characteristics. I will estimate the following:

Protectedic = α+X ′
icβ+ψc + ϵic . (4.1)
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In this model, PAic is a dummy variable that equals 1 if the cell i is included in the protected

areas of chiefdom c, as determined by the intervention. Xic is a vector of characteristics of

the cell and chiefdom related to the likelihood of being protected. This includes the average

deforestation rate before the policy started, tree cover in 2000, altitude, distance to human

settlements, distance to rivers, and distance to roads.

To account for the possibility of different decision processes conducted by chiefdoms, I

include chiefdom fixed effects ψc. This term captures time-fixed observable chiefdom charac-

teristics that may influence the choice of protected areas and their boundaries. For instance,

this can include the influence of chiefdom size, political structure, or geographical conditions

on the selection of conservation areas.

Additionally, to understand if the predictors have heterogeneous effects across different

chiefdoms, I can run the same model, adding interactions between chiefdoms and these pre-

dictors. If some chiefdom attributes assign different weights to certain cell attributes, this in-

teraction can capture that effect. One hypothesis is that different chiefs may give more weight

to more populated areas due to their land tenure situation. One could imagine that more

centralized chiefdoms have more enforcement power over land and allocate more land to be

protected.

Chiefdom outcomes The program signed contracts with selected chiefdoms located in the

Luangwa Valley. After consultations with local authorities, protected areas were delineated

within these chiefdom boundaries. The endogenous nature of protected site selection may

have led local communities to choose areas with low deforestation pressure. Economic in-

centive theory suggests that non-protected areas may experience increased deforestation due

to the reallocation of deforestation pressure from protected areas. To test this hypothesis, I

first examine the overall effects in treated chiefdoms. Next, I differentiate between protected

and non-protected areas within the treated chiefdoms. The comparison group for this analysis

consists of cell-level data from non-treated chiefdoms located in the Luangwa Valley.

To estimate the program’s effect on chiefdom outcomes, I use a Difference-in-Differences

(DiD) approach that explores cell-level information (Abman and Lundberg 2024; Cisneros et

al. 2022). The assumption is that the deforestation rates would maintain the same trend in the

absence of the program for chiefdoms that received the USAID contract and those that were
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not included in the contract. I will run the following regression:

yict = β0 +β1Aftert × Treatedc +αt + δc + ϵict . (4.2)

In this equation, yict corresponds to the inverse hyperbolic sine of tree cover loss of cell i in

chiefdom c at year t. Aftery is a dummy variable equal to 1 if year y is after 2015, when the

program started. Treatedc indicates if chiefdom c is included in the CFP contract. β1 captures

the overall effect of the program for cells in the treated chiefdoms. I use time (δt) and chiefdom

(γc) fixed effects to control for time-invariant unobservable characteristics that may impact tree

cover loss. ϵict is an idiosyncratic error term, and I clustered errors at the chiefdom level to

account for serial correlation between cells.

To estimate the cumulative yearly effects of the program on treated chiefdom, I estimate

the following event study:

yict = α+
∑
k

βkI(t = k)Treatedc + δt + γc + ϵict . (4.3)

In this equation, yict corresponds to the inverse hyperbolic sine of tree cover loss of cell i in

chiefdom c at year t. I regress this on yearly coefficients (βk) before and after the program

implementation. The coefficients will give me the yearly cumulative effect of the program on

deforestation outcomes. I use time (δt) and chiefdom (γc) fixed effects to control for time-

invariant unobservable characteristics that may impact tree cover loss. ϵict is an idiosyncratic

error term, and I clustered errors at the chiefdom level to account for serial correlation between

cells.

After evaluating the effect of the program on the treated chiefdom, I will run a similar

regression as before. To split the cells in treated chiefdom in protected areas and non-protected

areas I create a dummy variable (PAi) which is equal to 1 if a cell lies in the protected areas.

Similar to that, I also include a dummy (NPAi) for cells outside the protected areas and within

the treated chiefdom. The Difference in Difference equation is the following:

yict =β0 +β1 (Aftert × Protectedi) +β2 (Aftert ×NProtectedi)

+β3Protectedi +β4NProtectedi +αt + δc + ϵict .
(4.4)

The change relative to 4.2 is the usage of Protectedi andNProtectedi. β1 captures the overall
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effect of the program in the protected areas, whereas β2 captures the effect of the program in

the non-protected areas.

For the event study, the estimation is the following:

yict = α+
∑
k

βkI(t = k)Protectedi +
∑
k

λkI(t = k)NProtectedi + δt + γc + ϵict . (4.5)

In this event study, βk captures the yearly cumulative effects of the program in the non-

protected areas, whereas λk captures the yearly cumulative effects of the program in the non-

protected areas. Splitting the cells within treated chiefdoms allows to identification of differ-

ential dynamics within treated chiefdoms.

Issues with zero-valued based outcomes Researchers use the inverse hyperbolic sine transfor-

mation applied to tree cover loss areas to deal with the occurrence of multiple zeros (Cisneros

et al. 2022; Cisneros and Kis-Katos 2022; Abman and Lundberg 2024). The cyclical and grad-

ual nature of deforestation activities generates observation-time combinations in which no tree

cover loss will be observed, producing a considerable presence of zero values. The transfor-

mation not only deals with the zeros in the data but also enables to translation of the ATE

coefficient to percentage changes in the outcome variable, which is very useful for interpreta-

tion purposes (Bellemare and Wichman 2020).

However, a recent paper by Chen and Roth (2024) shows that estimations using log

transformations can be sensitive to the unity scale in the outcome variable. The paper shows

that the extensive margin effects lead to issues in the percentage interpretation of ATE. This

happens because the percentage change from zero to a positive number, and vice versa, is not

well defined. In the case of tree cover loss, a cell that was deforested and after policy does not

experience tree loss has not a well-defined percentage decrease in tree cover loss. Additionally,

the outcome unit (m2, km2, ha) influences the weight of these cases in the ATE estimation by

changing the distribution dispersion. Because of that, the interpretation of the coefficients

obtained through the regressions shown before can be sensitive to the units of my outcome

measure.

Chen and Roth (2024) propose three other estimators to use when using zero-valued

outcomes, as they are not unit-dependent. To interpret the coefficient in percentage terms one

can use Poisson regressions to recover the ATE in levels expressed as a percentage of the control

mean (Gourieroux, Monfort, and Trognon 1984; Silva and Tenreyro 2006; Wooldridge 2023;
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Correia, Guimarães, and Zylkin 2019). This estimation is not scale-dependent and normalizes

the ATE in levels. The parameter can be estimated using the following:

Yict = exp(θ0 + θATE%Aftert × Treatedc +αt + δc)ϵict . (4.6)

Where:

θATE% =
E[Y(1) − Y(0)]

E[Y(0)]
. (4.7)

To interpret this as a casual parameter, it is necessary to test for parallel trends which can be

verified by using the Poisson version of the event study shown in Equation 4.3.

5 Results

In this section, I will discuss the results regarding the effects of tree cover loss following the

policy intervention. First, I will present the chiefdom-level analysis of overall deforestation

for treated chiefdoms. Second, I will investigate the program’s effects on both protected and

non-protected areas within these treated chiefdoms. Third, I follow the discussion on Chen

and Roth (2024) and compare how these effects are scale sensitive comparing results usingm2

and ha as my outcome unit.

DiD results The overall effect of the program is illustrated in Table 4. I estimate Regressions

4.2 and 4.4 using two different samples, Columns (1) and (2) include all GMAs across the

country, Columns (3) and (4) limit the sample to cells within the Luangwa corridor (Figure

2). Estimating the regression using a sample in the corridor aims to compare regions that are

closer geographically, alleviating possible differences between regions in characteristics and

shocks faced. Columns (1) and (3) show the effect of the program on the contracted chiefdom’s

annual tree cover loss. These columns suggest no increase in overall annual tree cover loss in

both regressions, with both coefficients positive and not statistically insignificant.

The contracted chiefdoms face different conservation incentives between protected ar-

eas and non-protected areas, as the financial reward is conditional on conservation perfor-

mance within protected areas. Columns (2) and (4) show the results for regressions allow-

ing for heterogeneity within contracted chiefdoms between protected and non-protected ar-

eas. These columns suggest a composition effect within treated chiefdom where protected
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areas successfully reduce annual tree cover loss but with an increase in deforestation in non-

protected areas. The protected areas have a negative coefficient used in both samples but it is

statistically significant only when using all GMAs as a control group.

The parameters discussed before can be interpreted as causal if the parallel trends as-

sumption holds, indicating that contracted and non-contracted chiefdom cells would follow

the same trend in the absence of the program. The event study results from Equation (4.3) can

be seen in Figures 5a and 6a. The parallel trends assumption in both graphs looks to hold for

the majority of the years but indicates that the contracted chiefdoms were facing higher trends

in tree cover loss for some years. The yearly coefficients after the policy implementation sug-

gest an increase in annual tree cover loss for some years, although this increase in chiefdom

tree cover loss is not statistically significant on average.

Event study results Event study estimation using Equation 4.5 allows for heterogeneous effects

within contracted chiefdoms, by splitting cells in protected and non-protected areas within.

The coefficient plot can be seen in Figures 5b and 6b and suggest similar effects as those ob-

served in Table 4. The gap between these two groups and non-contracted chiefdoms before the

policy is statistically equal to zero in multiple years, with the corridor GMA sample showing

smaller differences in trends. This can be due to geographical proximity and shared features

as political shocks that may impact deforestation activities. The coefficients post-policy show

a similar dynamic as the one observed in Table 4. The program’s effect on conservation areas

reduced annual tree cover loss or avoided newly deforested areas. However, non-protected

areas face an increase in annual tree cover loss that persists after the policy implementation.

The event study dynamics decompose the average treatment effects observed in Table

4. These results suggest a compositional effect, indicating that contracted Chiefdoms deforest

less in protected areas while increasing tree cover loss in non-conservation areas. This corrob-

orates findings in the conservation literature, where spillover effects have been systematically

observed (Cisneros et al. 2022; Amin et al. 2019; Giudice et al. 2019).

Results interpretation The interpretation of the coefficients in Table 4 can be recovered using

the elasticities (exp(β̂)− 1) to recover the average effect per block. After recovering the average

effect per block, it is possible to calculate the block per-year conservation by multiplying the

effect by the group mean annual tree cover loss before the policy. Using the coefficient −0.364

from column (2), protected areas are losing 30% fewer trees than before the program imple-
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mentation. The protected areas per-year conservation is 9 ha, summing to 86 ha conserved

between 2015 and 2023. On the other hand, the non-protected areas increase annual tree cover

loss by 60 % if considering the lowest coefficient (0.476) obtained. This would mean an increase

of 113 ha in loss, totalizing 1021 ha of additional loss post policy. These results suggest that

the negative spillovers more than offset the conservation obtained by the protected areas, with

a net effect of 935 ha reduced after the policy.

However, as suggested by Chen and Roth (2024), the percentage interpretation of these

coefficients is not reliable as the coefficients are scale-sensitive. In Table 5 I estimated the same

regressions of Table 4 but changed the unit of annual tree cover loss to ha, the results are

sensitive the the scale unit. The effects of the program on Chiefdom’s overall annual tree cover

loss are the same as found before, no overall change was found for contracted chiefdoms.

Even though column (3) has significant coefficients, it is close to zero. However, the results are

different when looking at heterogeneous effects within treated chiefdoms. Columns (2) and

(4) do not indicate the existence of significant composition effects observed in Table 4, as the

coefficients for non-protected areas are not significant. For the protected areas, the significant

parameter indicates a 3% reduction in tree cover loss which can translated to 0.94ha conserved

in the protected areas. This conservation magnitude is 9.5 times smaller than indicated by

the coefficients in Table 4. This is evidence that these coefficients are very sensitive and can

generate substantially different results for the program.

The results using m2 units suggest that while the CFP may have had some success in

maintaining low levels of deforestation in protected areas, non-protected areas and treated

chiefdoms experienced an increase in tree cover loss post-policy. This could indicate leakage

effects, where deforestation activities shift to areas outside protected zones, thereby canceling

out the overall effectiveness of the program. However, these results are sensitive to the tree

cover measure unit, which makes the interpretation, magnitude, and direction of coefficients

vary substantially.

6 Conclusion

This study evaluates the environmental impacts of a REDD+ program in Eastern Zambia,

investigating the unintended consequences of its design. While protected areas within con-

tracted chiefdoms reduced tree cover loss, non-protected zones experienced significant in-

creases in deforestation, resulting in a net rise in deforestation across treated chiefdoms. These
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outcomes stem from distorted incentives, as the program ties revenue to carbon offset per-

formance solely within protected zones, leaving stakeholders in non-protected areas without

motivation to alter deforestation behaviors. Additionally, infrastructure and livelihood in-

vestments in treated chiefdoms, while aiming to reduce forest dependence, appear to have

intensified development pressures, exacerbating deforestation.

These findings align with broader conservation literature documenting the spillover ef-

fects of protection programs. The strategic selection of low-deforestation, remote areas as pro-

tected zones further complicate the program’s effectiveness by overstating conservation gains

while neglecting the displacement of deforestation activities. Together, these results highlight

the need for a more integrated approach to conservation policy.

Future programs should address these gaps by extending incentives to non-protected

areas to align stakeholder interests and mitigate leakage effects. Expanding carbon credit

eligibility to broader regions and emphasizing sustainable development practices, such as

eco-friendly agriculture and land-use planning, could help reduce unintended deforestation.

Moreover, closer engagement with local communities in selecting conservation areas and de-

signing interventions can ensure alignment with on-the-ground realities and long-term suc-

cess.

In conclusion, this study underscores the importance of designing conservation policies

that balance ecological and socio-economic dimensions. By addressing incentive distortions

and spillover effects, REDD+ programs can better achieve their dual objectives of reducing

deforestation and supporting community development, providing a valuable model for future

conservation efforts.
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Tables and Figures

Fig. 1. Conservation areas in Eastern Province and Mambwe District
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Note: These maps illustrate the overlapping of different geographical layers in Eastern Province. Black lines
delineate the region according to chiefdom boundaries. The green layer represents the Natural Parks, the gray
layer shows the Game Management Areas, and the red layer indicates the protected areas defined by the REDD+
program.
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Fig. 2. Game Management Areas, National Parks and REDD+ Protected areas in Zambia

National Park
GMA
Ecological Corridor
Protected Area

(a) Eastern Province

Note: The green layer represents the Natural Parks, the gray layer shows the Game Management Areas (GMAs,
and the red layer indicates the protected areas defined by the REDD+ program. The hatched area indicates the
Luangwa Valley, an important biodiversity location in Eastern Zambia, targeted by the program.
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Fig. 3. Eastern Province baseline tree cover and tree cover loss in 2023

(a) Tree cover in 2000

(b) Cell tree cover loss in 2023

Note: The maps plots tree cover in 2000 and tree cover loss in 2023 from hansen2013<empty citation>,
using 30m × 30m hansen cells. Figure 3a maps the tree cover in 2000 for each cell, and Figure 3b highlights the
deforested cells in 2023, shown in red.
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Fig. 4. Chiefdom distribution of 0.1-degree cell share of tree cover
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(b) Luembe
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(e) Mwanya
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(f) Nyalugwe

Note: This Figure presents the 0.1 degree cell share of tree cover distributions of Chiefdoms surveyed by USAID in 2015
and 2024. The x-axis corresponds to the cell share of forest canopy, i.e., the proportion of the cell which is populated by
crowns of trees. The y-axis corresponds to the proportion of cells within a share of canopy bin.
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Table 1: Corridor GMAs summary statistics by group

Not Contracted Contracted

PA and NPA PA NPA

Cell canopy share in 2000 (%) 24.791 22.808 23.422 22.143
(9.25) (7.02) (7.43) (6.48)

Tree cover in 2000 (ha) 34.584 31.641 32.871 30.306
(10.27) (8.21) (8.41) (7.76)

Average annual tree cover loss inm2 2001-2014 226.740 136.896 38.558 243.578
(651.90) (461.18) (158.47) (627.96)

Altitude (m) 813.671 707.301 686.353 730.027
(234.40) (150.42) (134.10) (163.33)

Maize Potential Yield (kg/acre) 2982.602 3091.513 3101.424 3080.761
(142.35) (95.91) (81.12) (108.71)

Distance to human settlements (km) 3.796 3.646 5.334 1.815
(3.34) (3.19) (3.24) (1.83)

Distance to roads (km) 4.918 6.875 9.070 4.492
(4.74) (5.84) (6.19) (4.32)

Distance to Eletrical network (km) 48.184 64.264 74.066 53.631
(31.10) (38.47) (37.84) (36.27)

Observations 29599 16193 8426 7767

Note: This table presents summary statistics for Corridor Game Management Areas (GMA). The
GMA observations are divided into Not contracted Chiefdoms and contracted Chiefdoms. Con-
tracted chiefdoms are split into protected areas (PA) and Non protected areas (NPA). The table
presents the mean value for 1kmx1km blocks within each group. Standard errors are presented in
parentheses.
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Table 2: Correlation between annual tree cover loss and program offer within treated chief-
doms

Contracted Contracted - Protected Contracted - Not Protected

After CFP 0.256*** -0.149*** 0.693***
(0.065) (0.031) (0.105)

R2 0.05 0.01 0.06
Observations 375,728 194,787 180,941
Chiefdom FE Yes Yes Yes

Note: The dependent variable is the inverse hyperbolic sine of the deforested area in each 0.01×0.01
cell for each year. Column 1 presents the coefficient estimates using all cells in treated chiefdom.
Column 2 shows results for cells within protected areas, while Column 3 displays results for cells
in non-protected areas within treated chiefdom. Standard errors are reported in parentheses, and
errors are clustered at the chiefdom level. *, **, and *** indicate statistical significance at the 10%,
5%, and 1% levels, respectively
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Table 3: REDD+ site selection probability

Linear Probability Logit

(1) (2) (3) (4) (5) (6)

Tree cover in 2000 0.009*** 0.009*** 0.005*** 0.046*** 0.046*** 0.040***
(0.001) (0.001) (0.000) (0.003) (0.003) (0.004)

Tree cover loss in ha (2001-2014) -0.178*** -0.178*** -0.054*** -2.620*** -2.623*** -0.802***
(0.006) (0.006) (0.005) (0.095) (0.095) (0.079)

Altitude -0.001*** -0.001*** -0.001*** -0.004*** -0.004*** -0.007***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Maize productivity 0.001*** 0.001*** 0.001*** 0.005*** 0.005*** 0.010***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Biodiversity occurences -0.001*** -0.001* -0.024*** -0.007
(0.000) (0.000) (0.009) (0.007)

Distance to National Park (km) -0.000 -0.000
(0.000) (0.001)

Distance to roads (km) 0.006*** 0.039***
(0.001) (0.005)

Distance to human settlements (km) 0.000*** 0.000***
(0.000) (0.000)

Distance to electrical network (km) 0.000*** 0.000***
(0.000) (0.000)

Observations 16,336 16,336 16,336 16,336 16,336 16,336

Note: The dependent variable is a dummy equal to one if a particular cell is within the REDD + protected
areas defined by CFP, zero otherwise. I estimate a linear probability model (columns 1 to 3) and a logit
model (columns 3 to 6) to investigate characteristics related to site selection. Columns 1 and 4 includes
land characteristics. Column 2 and 5 add a measure of biodiversity presence. Column 3 and 6 adds
measures of distance to human, infrastructure and National parks. Standard errors are reported in
parentheses, and errors are clustered at the chiefdom level. *, **, and *** indicate statistical significance
at the 10%, 5%, and 1% levels, respectively
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Table 4: Estimates for the impact of CFP on tree cover loss area inm2

All GMAs Corridor GMAs

(1) (2) (3) (4)

Contracted Chiefdom 0.045 0.210
(0.214) (0.252)

Contracted - Protected -0.364*** -0.247
(0.138) (0.196)

Contracted - Not Protected 0.476** 0.632**
(0.239) (0.279)

R2 0.08 0.09 0.09 0.11
Observations 3,565,368 3,565,368 1,051,905 1,051,905
Chiefdom FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Note: The dependent variable is the inverse hyperbolic sine of deforested area (m2) in each
0.01×0.01 cell each year. Column 1 shows the regression results for chiefdom cells, not distin-
guished by protection status. Columns 2 and 3 show the coefficients for protected and non-protected
areas obtained in a regression that separates chiefdom cells into these categories. The comparison
group includes cells in non-treated chiefdom. Standard deviations are reported in parenthesis and
errors are clustered at the chiefdom level. *,**,*** denote statistical significance at the 10%, 5%,
and 1% level, respectively.
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Table 5: Estimates for the impact of CFP on tree cover loss area in ha

All GMAs Corridor GMAs

(1) (2) (3) (4)

Contracted Chiefdom -0.015 -0.004***
(0.013) (0.001)

Contracted - Protected -0.030*** -0.025
(0.011) (0.018)

Contracted - Not Protected 0.005 0.015
(0.014) (0.020)

R2 0.07 0.07 0.08 0.08
Observations 3,565,368 3,565,368 1,051,905 1,051,905
Chiefdom FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Note: The dependent variable is the inverse hyperbolic sine of deforested area (ha) in each
0.01×0.01 cell each year. Column 1 shows the regression results for chiefdom cells, not distin-
guished by protection status. Columns 2 and 3 show the coefficients for protected and non-protected
areas obtained in a regression that separates chiefdom cells into these categories. The comparison
group includes cells in non-treated chiefdom. Standard deviations are reported in parenthesis and
errors are clustered at the chiefdom level. *,**,*** denote statistical significance at the 10%, 5%,
and 1% level, respectively.
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Fig. 5. Event study coefficients using the sample of all GMAs
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Note: The graphs plot coefficients from Equations 4.3 and 4.5 using the sample of all GMAs in Zambia. 5a
presents the yearly coefficients for cells within Contracted Chiefdoms, and 5b for cells within protected and non-
protected areas within Contracted Chiefdoms. Yearly coefficients have vertical lines for standard errors. The
vertical black line indicates the beginning of the CFP program in 2015.
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Fig. 6. Event study coefficients using the sample of GMAs in the Luangwa corridor
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Note: The graphs plot coefficients from Equations 4.3 and 4.5 using the sample of all GMAs in Zambia. 6a
presents the yearly coefficients for cells within Contracted Chiefdoms, and 6b for cells within protected and non-
protected areas within Contracted Chiefdoms. Yearly coefficients have vertical lines for standard errors. The
vertical black line indicates the beginning of the CFP program in 2015.
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ONLINE APPENDIX
Strategic Environment:

Conservation Policies Effectiveness and Strategic Behavior
Angelo Santos

A Additional Data Details (Online)

A.1 Tree cover data

To measure tree cover and tree cover loss, I used the Global Forest Change (GFC) (Hansen

et al. 2013) from the University of Maryland. This dataset was created based on a set of Land-

sat images since 2000, providing yearly layers on tree cover change for the all globe. This

dataset is publicly available for download and can be used in the Google Engine platform for

visualizations and data processing.

The dataset has a spatial resolution of 1 arc-second per pixel or approximately 30 meters

per pixel at the equator. We use two layers of tree cover information. First, I used the tree

canopy cover for the year 2000. This defines the share of forest canopy for each 30x30m grid,

defining a tree as any vegetation taller than 5m in height. The information is the percentage

per grid cell of forest canopy, ranging from 0-100. This layer is my baseline data and there

are no year updates on the forest canopy share per grid, which is a caveat of using the GFC

data. The second layer measures tree cover loss defined as a stand-replacement disturbance or

a change from a forest to a non-forest state at the grid level. The cell level information ranges

from 0 to 20, where 0 represents no loss and 1 to 23 represents loss detected primarily in the

years 2001-2023, respectively.

In addition to these layers, the GFC has 4 more layers. There is a layer of forest cover

gain from 2000- to 2012, which is defined as the inverse of loss, or a non-forest-to-forest change

entirely within the period. The information is encoded as 1 (gain) or 0 (no gain). Another avail-

able is the data mask for cells where 0 represents areas with no data, 1 for mapped land surface,

and 2 for persistent water bodies based on 2000 to 2012. The last two layers are the Circa year

2000 Landsat 7 cloud-free image composite and the Circa year 2023 Landsat cloud-free im-

age composite. The first contains reference multispectral imagery from the first available year,

typically 2000. The list contains reference multispectral imagery from the last available year,

typically 2023.

The dataset is downloaded by 10x10 degree combinations through the website. To pro-

34

https://storage.googleapis.com/earthenginepartners-hansen/GFC-2023-v1.11/download.html


cess the dataset for my location of interest, I have determined a latitude-longitude box and

filtered the 10x10 degree datasets. After filtering the layers, I overlapped location boundaries

(chiefdom, protected areas, and village areas) to aggregate 30x30m to the 0.1-degree cell level

combinations.

A.2 Fires data

To measure the fire events I will use the Fire Information for Resource Management System

(FIRMS) from NASA. This dataset provides Near Real-Time (NRT) active fire data using im-

ages from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared

Imaging Radiometer Suite (VIIRS). The NRT data is available within 3 hours of satellite obser-

vations, except the US and Canada which have real-time data. The resolution is 375m and the

data is available since 20 January 2012. This dataset is publicly available for the all globe and

can be downloaded through the NASA Earthdata API.

Each 375m pixel has attributes on fire outcomes and technical information. The centroid

of the 375m pixel is informed by latitude and longitude coordinates. To measure fire intensity,

the dataset informs two scales of temperature in Kelvin reflected by channel brightness, Bright-

ness temperature I-4 and Brightness temperature I-5. The information related to the timing of

the event is the date, time, day, or night category. Regarding the confidence of the measure,

there are three groups: Low, Nominal, and High confidence. This is determined by the fire in-

tensity and sun glint. Low-confidence detection is typically linked to regions affected by Sun

glint and has lower relative temperature anomalies (less than 15 K) in the mid-infrared chan-

nel I4. Fire Radiative Power (FRP) is another measurement of fire intensity, that is based on

a hybrid approach combining 375 and 750 m data. Nominal-confidence detection is free from

potential Sun glint contamination during the day and exhibits strong temperature anomalies

(greater than 15 K) in either day or nighttime data. High-confidence detections are associated

with saturated pixels, whether during the day or at night. More technical information includes

the satellite source of observation, which could be the Suomi National Polar-orbiting Partner-

ship (Suomi NPP), NOAA-20 (formally JPSS-1), and NOAA-21. Another source of technical

information is the version of the data.
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A.3 Protected areas

The protected areas information used in the paper comes from the Planet protected data on

protected areas and other effective area-based conservation measures (OECMs). This dataset

contains the most complete and updated information on terrestrial and marine protected areas

around the globe. The database contains shapefiles that inform multiple characteristics of these

areas, such as location, type of protected area, ownership, forest management plan existence,

and other characteristics.

An important information concerning these areas is the designation, which includes Na-

tional Parks, Game Management Areas (GMAs), and Forest reserves. This is relevant to know

as the rules relative to forest usage differ conditional on the designation type. For instance,

Forest reserves do not have strict rules relative to forest usage as National Parks are strictly

monitored and prohibit activities that can harm its biodiversity, and human settlements. The

GMAs in Zambia are more flexible in terms of the rules, allowing Human settlements, and

focus on rules for sustainable hunting in the area. According to the dataset, Zambia contains

20 National parks, 36 GMAs, and 464 Forest reserves.

A.4 Zambia Rural Agricultural Livelihoods Survey (RALS)

I use the Zambia Rural Agricultural Livelihoods Survey (RALS), which provides comprehen-

sive information on rural households across Zambia. This dataset is available under request

and confidentiality agreement with the Indaba Agricultural Policy Research Institute (IAPRI).

The survey was conducted in 2012, 2015, and 2019 and serves as an important tool for

understanding the dynamics of rural livelihoods, agricultural production, and rural develop-

ment challenges in Zambia. RALS is a partnership between the Indaba Agricultural Policy

Research Institute (IAPRI), the Central Statistical Office of Zambia, and the Ministry of Agri-

culture.

The sample of the study includes small and medium farmers, i.e. cultivating less than

20 Ha, and follows the Zambia 2010 Census sample. The dataset has 17 sections in 2019 and in-

cludes detailed data on agricultural practices, household demographics, livestock ownership,

and economic activities. This dataset covers multiple dimensions of rural livelihoods, such

as crop production, income sources, and access to essential services like credit and extension

services. The survey’s rich demographic and economic data, combined with its geographic
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coordinates on household locations, allows it to map and construct geographical indicators.

A.5 GRID3 Settlement Mapping

The GRID3 Settlement Mapping for Zambia provides detailed geospatial data identifying the

location and extent of human settlements throughout the country. This mapping initiative

combines satellite imagery with population data, helping to locate both urban and rural com-

munities with high accuracy. The data captures the physical boundaries of settlements, which

include residential areas, infrastructure, and other human-made structures. With the location

of this settlement, it is possible to construct village-level outcomes by allocating cells to the

closest settlement according to the data. This is done by creating Voronoi polygons.

A.6 Cell aggregation

My main analysis relies on 0.01×0.01 degrees cell grids, which corresponds to approximately

1km×1km. I created these grids using the function X in Python, which rounds a given number

to the Y border. I use this function for both the latitude and longitude coordinates of a particu-

lar cell and create a geoid. The geoid consists of the concatenation of the rounded latitude and

longitude strings. For example, a cell located at -z and l will have the following geoid ”−z l”.

After creating the 0.01x0.01 geoids, I can aggregate cell values using aggregation func-

tions. For example, I can compute the tree cover loss for each geoid in a particular year by

using the sum aggregation function for the tree cover loss for smaller grids associated with

this ID. For other variables, I take the mean, as tree cover in 2000.

A.7 Geographical matching

To create multiple cell-level information I used geographical matching. I use an open-source

package in Python called GeoPandas, which contains functions that perform geospatial oper-

ations. To match the multiple layers I use two methods I use the function sjoin which over-

laps layers and matches them geographically. For example, using the shapefile of the Eastern

province I can overlap with all the cells within the region and associate it with the province-

level data.
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B Additional Method Details (Online)

In this section, I give more details about additional methods that will be used to obtain more

local effects, (RDD) and village-level effects (DiD).

REDD+ protected areas effects - Pure RDD To estimate the impact of the protected areas ini-

tiated by the CFP program, I will use a Geographical Regression Discontinuity Design (RDD).

Three main elements define this design: a score s, a cutoff c, and bandwidth choices (formal-

ized below). The identification strategy relies on the fact that cells closer to the cutoff c are

similar in observable and unobserved characteristics with the difference of the new protection

boundaries. In my context, cells within the protected areas face a discrete change in the like-

lihood of being deforested after the conservation boundary implementation. This likelihood

can be reflected by the score s of cells, which is a function of the distance to the protected ar-

eas’ borders. Going further from the border of the PAs, the cells tend to be differentiated in

multiple dimensions and decrease the score associated with the likelihood of being deforested.

This highlights the importance of bandwidth h choice around the cutoff, as this influences

the comparability of cells within the protected areas with contractual boundaries. The opti-

mal bandwidth is estimated using non-parametric methods following Cattaneo, Idrobo, and

Titiunik (2019) which minimizes the Mean Squared Error (MSE) influenced by the estimator

bias-variance tradeoff.

To formalize the RDD, I define cell i and nh as the total number of cells observed within

the bandwidth h, where i = 1, 2, ...,nh. In addition, Xi = {lati, longi} is the centroid of cell

i. The cutoff c is the coordinates {latc, longc} for the closest PA defined by the program.

Treatment is defined by Ti ∈ 0, 1 where 1 indicates that cell i is treated, which happens when

scoring s = 1. This includes cells for which the distance between cell i coordinates and the

closest PA is positive (Xi − c ⩾ 0) and c− h ⩽ Xi ⩽ c+ h, where h corresponds to the optimal

bandwidth. If the distance is negative (Xi − c ⩽ 0) and c− h ⩽ Xi ⩽ c+ h, the cell score is

zero (s = 0) implying no treatment (Ti = 0). This implies that this cell is located outside the

protected areas defined by CFP.

To estimate the local average treatment effects (LATE) τh of the REDD+ PAs on celli de-

forestation rate conditional on bandwidth choice h, I will follow Cattaneo, Idrobo, and Titiunik

(2019) which proposes a non-parametric method to identify the LATE parameter. I will add co-

variates which should not change the LATE magnitude but add precision to the estimator, the

38



errors are clustered at X by X km grid groups. The reduced form estimation is the following:

yi(h) = α+ τhTi +β1,hf(Xi − c) +Z
′
iγ+ ϵi (B.1)

Where yi corresponds to cell i deforestation, τh is the average treatment effect of the CFP-

protected areas, Ti is a dummy variable equal to 1 if the cell is within the borders of the PAs

areas. The h parameter indicates that the estimation is performed conditional on cells being

located within the optimal bandwidth h. In conclusion, f(Xi − c) is a functional form used

to fit the data variation, and Zi is a vector of cell characteristics as terrain, institutional, and

infrastructure information.

The effects of interest (τ) is identified by the following:

τ = E[Y(1) − Y(0)|X = c] = lim
x↓c

E[Y|X = x] − lim
x↑c

E[Y|X = x] (B.2)

This indicates that the local average treatment effect of CFP (τ) can be identified by the dif-

ference between deforestation rates of treated cells (protected areas) and control cells (unpro-

tected areas) around the cutoff c. The limit indicates that this parameter is the vertical differ-

ence between observations at the cutoff. This relies on a potential outcomes framework that,

under the RDD assumptions, implies that Y(0) are proper counterfactual for Y(1) outcomes

without the establishment of the new protected areas.

Furthermore, I verify heterogeneous effects estimated by cell subgroups as suggested

by Cattaneo, Idrobo, and Titiunik (2019). This consists of estimating different local treatment

effects (τg) for cells conditional on different subgroups (g) defined by cell characteristics in

the baseline year 2015. Exploring the USAID surveys, I will test heterogeneous effects for cell

proximity to treated villages, and villages/chiefdom characteristics related to forest depen-

dence and social norms. Using supplementary data I will check for effects conditional on road

and infrastructure proximity to account for market access and different costs of deforestation.

Using remote data on land characteristics such as slope, soil quality, and agriculture feasibility,

I test how these effects differ conditional on terrain characteristics.

To test if the RDD identification assumptions hold, I perform a series of validation and

falsification tests proposed by (Cattaneo, Idrobo, and Titiunik 2019). I verify the covariate’s

continuous assumption around the cutoff and some placebo outcome tests. This aims to ver-
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ify if the discontinuity observed around the cutoff only applies to deforestation rates. If there

are substantial discontinuities on covariates, this indicates that there are other aspects that

can impact the different levels of deforestation observed between areas. For the placebo out-

comes test, if there are discrete jumps on outcomes not related to the objectives of the program

(for example, soil agriculture feasibility) this would indicate that other aspects are influencing

the context during the program period. I also test results sensibility to cutoff and bandwidth

choices, and frequency of observations around the optimal cutoff.

Village level outcomes To estimate the program effect on village outcomes, I will use a Difference-

in-Differences (DiD) approach. The exogeneity assumption is that the deforestation rates would

keep the same trend for treatment and control in the absence of the program. The geographic

unit of analysis is the surrounding of the villages surveyed by USAID. I choosed a 5 km buffer

due the report of the majority of household on forest access. In the household survey, 90 %

of the surveyed hhs report less than 5 km from the forest used to collect or produce goods.

Related to agriculture fields, y % report that these fields are h km from them. The same hap-

pens in the village headperson survey, where they report the distance to forests used by the

community. This suggests that choosing a 5 km buffer around these villages is a reasonable

assumption to capture effects due village behavior. However, I used different buffer size to

verify if my results are sensitive to its extension. Another concerning about the buffer size is

the possibility of having overlapping areas. To deal with this possibility, I assigned weights to

cells that are around more than 1 village buffer. The weight is simple the inverse of the number

of villages sharing a particular cell, i.e. 1/#ofvillages. I show that my results are not sensitive

to using weights to measure deforestation rates.

I will leverage the proximity to the protected areas as an intensity of treatment, as the

program may. The reduced form is estimated as follows:

yvy = β0 +β1CFPvy +αy + δv + ϵvt , (B.3)

where y corresponds to the environmental outcomes around village v in year y, CFPvy is

dummy variable equal to 1 if the village is included in one of the treated chiefdom and is

located within x km from the protected areas. alphay and δv are year and village fixed effects

included to control for time-invariant village and year characteristics that can impact environ-

mental outcomes. β1 informs the impact of offering the CFP program to villages closer to the
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protected areas on environmental outcomes.

I also run an event study for the village level computing yearly coefficients for 5km

buffers around treated villages. I estimate the following:

yivct = α+
∑
k

βkI(t = k)CFPvc+ δt + γc + ϵict , (B.4)

In this equation yict corresponds to inverse hyperbolic sine of tree cover loss within village i

5km buffer in chiefdom c at year t. I regress this on yearly coefficients (βk) before and after

the program implementation. The coefficients will give me the yearly cumulative effect of

the program on deforestation outcomes. I use time (δt) and chiefdom (γc) fixed effects to

control for time-invariant unobservable characteristics that may impact tree cover loss. ϵict

is a idiosyncratic error term, and I clustered errors at the chiefdom level to account for serial

correlation between cells.

To test for heterogeneous effects, I will interact the CFP dummy with social norms and

forest dependence variables. For social norms, I will estimate the following:

yvy = β0 +β1CFPvy +β2Social Norms+β3CFPvy × Social Norms+αy + ϵvt (B.5)

For forest dependence, I will estimate the following:

yvy = β0 +β1CFPvy +β2Forest Dependence+

β3CFPvy × Forest Dependence+αy + ϵvt

(B.6)

The standard errors are clustered at the village level to take into account serial correlation

between.
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C Additional Results (Online)

In this section I will present more results

C.1 Distributional analysis

In this section, I will discuss some descriptive facts about the environmental outcomes in East-

ern Zambia. Specifically, I discuss deforestation rates and tree cover before the program im-

plementation. I will proceed with the description using different types of geographical units,

such as chiefdoms, villages, and REDD+ protected areas.

Deforestation rates in Zambia Figure D.9 shows the distribution of 0.1 degree cell share of

forest canopy, by chiefdom. On the x-axis, we have the share of forest canopy for 0.1-degree

cells, on the y-axis I plot the proportion of cells for each share of forest bin. I also plot the mean

share of forest canopy for each location.

These figures clarify how the classification of cells as forested depends on the minimum

threshold of forest canopy for considering a cell as forested. The mean share of the canopy of

these cells is between 18% and 28 %, with the distributions concentrated between 5% and 50%.

This suggests that the vegetation in Eastern Zambia is mainly sparse forest.

Contributing to what was discussed before, figure D.1 shows the distribution of cell

proportion forested conditional on different minimum thresholds of tree canopy for forest cat-

egorization, by chiefdom. Focusing on the blue distributions, the minimum threshold is 10%

of the forest canopy, a big proportion of the cell has more than half of the cell is considered as a

forest. However, increasing the threshold shifts the distribution to the left, indicating that the

proportion of cells with considerable forested shares almost disappears.

I also plotted the tree cover in 2000 around villages included in the USAID survey.

Figure D.3 shows the tree cover distribution around 5km buffers from villages, by distance

from the protected areas. The figure suggests that villages 5-10 km from the borders of the

protected areas has an slightly different distribution. This villages have more cell with higher

shares of canopy.

An important measure related to deforestation is the number of fires alerts captured by

satellites. Using the FIRMS NASA dataset I plot the distribution of the fires alerts by chiefdom

in figure D.4. The distributions show a seasonal trend concentrating fires alerts between June

and November in all the chiefdoms. The same can be seen when plotting a distribution for all
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the chiefdoms in figure D.5.
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D Appendix Figures and Table (Online)
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Fig. D.1. Chiefdom distribution of 0.1 degree cell proportion forested
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(a) Chikomene
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(b) Luembe
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(c) Malama
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(d) Msoro
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(e) Mwanya
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(f) Nyalugwe

Note: This Figure shows the 0.1 degree cell proportion of forested cells conditional on canopy share threshold. The x-axis
corresponds to the cell share of forested cells, i.e., the proportion of the cell which is considered forest conditional on
different thresholds of forest canopy. The y-axis corresponds to the proportion of cells within a share of forested cell bin.
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Fig. D.2. Village buffers distribution of 0.1 degree cell share of forest canopy by proximity
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(a) 0 to 5 km from REDD+ areas
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(b) 5 to 10 km from REDD+ areas
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(c) 10 to 15 km from REDD+ areas

Note: This Figure shows the 0.1 degree cell share of canopy distributions of villages 5km buffer. Figure a plots the
distributions for villages within 5 km from the REDD+ protected areas (PA). Figure b and c shows the distribu-
tions for 5km to 10km, and 10 - 15km, respectively. The x-axis corresponds to the cell share of forest canopy, i.e.,
the proportion of the cell which is populated by crowns of trees. The y-axis corresponds to the proportion of cells
within a share of canopy bin.
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Fig. D.3. Village 5 km buffers distribution of 0.1 degree cell share of forest canopy
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Note: This Figure shows the 0.1 degree cell share of canopy distributions of villages 5km buffer.
There are three colors to distinguish villages by proximity to the REDD+ protected areas (PA).
Figure D.2 shows these distributions separately. The x-axis corresponds to the cell share of
forest canopy, i.e., the proportion of the cell which is populated by crowns of trees. The y-axis
corresponds to the proportion of cells within a share of canopy bin.
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Fig. D.4. Number of fires identified by treated chiefdom.
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Note: This figure shows the number of fires detected within Chiefdom boundaries. The y-axis represents the count of
identified fires, while the x-axis displays the month of occurrence.
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Fig. D.5. Number of fires identified within chiefdom, protected areas and village 5 km buffer.
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(c) Villages

Note: This figure shows the number of fires detected within treated Chiefdoms, REDD+ pro-
tected areas, and 5 km buffers around villages. The y-axis represents the count of identified
fires, while the x-axis displays the month of occurrence.
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Fig. D.6. Conservation areas and household locations in Eastern Province and Mambwe Dis-
trict
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(a) Eastern Province
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(b) Mambwe District

Note: These maps illustrate the overlapping of different geographical layers in Eastern Province and location of
surveyed Households by USAID and Zambia Statistcal agency. Black lines delineate the region according to
chiefdom boundaries. The green layer represents the Natural Parks, the gray layer shows the Game Management
Areas, and the red layer indicates the protected areas defined by the REDD+ program. Blue dots indicate the
village location according to USAID surveyed Households. Black dots indicate households location from RALS
survey.
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Fig. D.7. Event study by Treated Chiefdoms share protected and centrality - corridor
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Fig. D.8. Event study by Treated Chiefdoms share protected and centrality - corridor
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Fig. D.9. Event study by different Chiefdom categories
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Note: This Figure presents the 0.1 degree cell share of tree cover distributions of Chiefdoms surveyed by USAID in 2015
and 2024. The x-axis corresponds to the cell share of the forest canopy, i.e., the proportion of the cell populated by crowns
of trees. The y-axis corresponds to the proportion of cells within a share of the canopy bin.
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