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1 Introduction

Air-pollution exposure has been increasing over time and growing evidence has pointed to

this exposure as a high-risk factor for global health (Gakidou et al. 2017). Fine-particulate-

matter exposure, especially to PM2.5, has been implicated as the cause of millions of deaths

around the world, and negatively correlated with outcomes such as health, children’s cognitive

development, and productivity (Fisher et al. 2021; Fu, Viard, and Zhang 2021; Odo et al. 2023).

Additionally, more than half of the global population is exposed to shallow quality air (PM2.5

concentrations of more than 35 µg/m3) and this exposure has been increasing over time (Pirlea

and Huang 2019; Shaddick et al. 2020). As pollution exposure worsens across the world, it is

ever more important to examine the distributional effects this has on global populations to

better understand what parts of the world are most or least affected in order to better design

potential policy interventions.

A large literature already documents changing patterns of global climatic and pollution

exposure but generally focuses on variations in climatic measures across locations and time,

without tying the data to the geographical distribution of the population experiencing these

changes (Mehta et al. 2016; Tian et al. 2023). In social science, there is also a rapidly grow-

ing empirical literature that uses available micro-data from parts of the world to estimate the

effects of pollution exposures on labor market productivity, health, as well as educational out-

comes (Brabhukumr et al. 2020; Gakidou et al. 2017; Odo et al. 2023). These papers, however,

do not provide global analyses of the overall pollution burdens facing population from across

the world.

This paper contributes to burgeoning literature that combines global population distribu-

tion and global air pollutant measurements to study global heterogeneities in population-

weighted air pollution burden (Shaddick et al. 2018; Van Donkelaar et al. 2021). Prior papers

in this literature have generally focused on comparing regional and national mean measures.

Our paper is the first to analyze inequalities in air pollution distributions across and within re-

gions and countries of the world. We accomplish this by decomposing the global population-

weighted air pollution distribution into across and within region and country components.

Additionally, we provide the first global analysis that maps global national and subna-

tional variations in air pollution to economic development as captured by GDP per capita. We

provide results on the direction and magnitude of the GDP per capita and air pollution associ-
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ation globally and for each continent, and use continental and regional fixed effects to explain

whether aggregate associations are due to across region or within region variabilities.

Our analysis is based on gridded high-resolution global data on pollution and population

and subnational GDP per capita data from around 2010, the year around which globally reli-

able measures of air pollution, population and GDP are available. For air pollution, we use

data on air pollution by aerosols, as captured by satellite-based Aerosol Optical Depth (AOD)

measurements (Xiong et al. 2020). We combine the air pollution by aerosol data with gridded

granular national population census and population register data (CIESIN Columbia Univer-

sity 2018). We compute in particular the relative burden of air pollution by aerosol facing

population in a particular gridded cell versus the global population-weighted mean exposure,

and we construct country-specific population distributions of air pollution burden based on

the geographical dispersion of population and air pollution within each country. Finally, we

combine the population-weighted air pollution data, aggregated to subnational levels, with

subnational GDP per capita data (Gennaioli et al. 2013; Kummu, Taka, and Guillaume 2018).

We find considerable global inequalities in population-weighted air pollution by aerosol

exposures. Population in Asia, the continent with the highest level of air pollution by aerosols,

face a mean exposure level that is 3.3 times larger than those faced by population in Ocea-

nia, which has the lowest mean exposure among continents. Looking across regions within

continents, we find that in Eastern Asia, the subcontinental region with the highest level of

air pollution by aerosols, the population faces a mean exposure level that is 6.0 times larger

than that faced by the population in Australia and New Zealand, which have the lowest mean

exposure among subcontinental regions,

In terms of inequalities, across continents, population at the 80th percentile of the continen-

tal air pollution by aerosol distribution have between 28% (Europe) to 141% (Africa) greater air

pollution by aerosol exposures than population at the 20th percentile. Across subcontinental

regions, population at the 80th percentile of the regional air pollution by aerosol distribution

have between 2% to 208% greater air pollution by aerosol exposures than population at the 20th

percentile. Within countries, population at the 80th percentile of country-specific air pollution

by aerosol distributions have between 0% to 359% greater air pollution by aerosol exposures

than population at the 20th percentile.

For the global GDP per capita and air pollution by aerosol analysis, overall, we find a strong

negative global correlation. This indicates that globally, national and subnational economic
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units with higher GDP per capita tend to have lower air pollution by aerosols. Specifically, us-

ing subnational population-weighted data, we find that a doubling of GDP per capita is associ-

ated with a 11.8 percentage points reduction in the percentage deviation between a subnational

unit’s population-weighted air pollution by aerosol level and the global population-weighted

mean. This global association is largely explained by correlation between continental-level

mean GDP per capita and air pollution by aerosol.

Furthermore, we analyze the GDP and air pollution relationship within each continent.

Exploiting variabilities in subnational data after controlling for aggregate regional variabilities,

we find a positive association between air pollution by aerosols and GDP per capita in Africa

and Europe, but negative association in the Americas, Asia, and Oceania.

2 Data and Methods

2.1 Data and aggregation

Air pollution by aerosols as measured by AOD Aerosols are ensembles of suspended par-

ticles present in the Earth’s atmosphere. Atmospheric pollution by aerosols is important to

human health and well-being because higher amounts of aerosol particles degrade visibility

and can also damage health, especially when there is a higher concentration of PM2.5 parti-

cles that are smaller then 2.5 micrometers (Jacobson 2002). Aerosol Optical Depth (AOD) is

a satellite-based measure that captures the composition, size and concentration of aerosols

by measuring the magnitude of atmospheric light reflection and absorption across the globe

(Lenoble, Remer, and Tanre 2013). Scaled between 0 to 1, an AOD value that is less than 0.1

indicates crystal clear sky and clear satellite to earth surface visibility. In contrast, an AOD

value close to 1 indicates very hazy conditions (NASA Earth Observatory 2024).

We use AOD measurements based on images collected by the TERRA satellite with its

MODIS instruments (Xiong et al. 2020), and we access the data via the NASA EarthData data

collection, using the OpenDAP protocol (Cornillon, Gallagher, and Sgouros 2003). On each day

in a particular year, tracking along TERRA’s orbital path across the globe, we download AOD

data at a spatial resolution of 3km × 3km and at all available 5 minute temporal resolution

units. For each day, this process generates a vector of latitude-, longitude-, and time-specific

AOD measurements.

Within each 1◦ × 1◦ longitude–latitude grid (cell), we compute average daily AOD values
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based on the subset of the daily AOD measurement vector that fall within the geographical

boundaries of each cell on that day. Repeating this across days during a year, we generate for

each cell, a vector of average daily AOD measurements. During each year, the length of these

cell-specific daily average AOD vectors is equal to the number of days in which valid AOD

measurements are available for a particular cell. On some days, there might be no cell-specific

AOD measurements due to high cloud fraction and invalid reflectance assumptions (Wang

et al. 2021) or due to limited overlaps between the cells and the daily orbital path (Xiong et

al. 2020).

Using the cell-specific vectors of average daily AOD measurements from a year, we com-

pute annual average AOD exposures for each cell, first averaging over the days in which cell-

specific measurements are available, and then separately averaging over all days after comple-

menting the observed averages with interpolated and extrapolated estimates on days without

cell-specific measurements. Due to the concentration of missing AOD data in regions with

the least population, our population-weighted AOD distributional results based on the raw

data and interpolated and extrapolated data are very similar. Our global inequality results

presented in the text are based on annual averages of the raw data.1

Global gridded population data In conjunction with the cell-specific AOD data, we generate

cell-specific global population estimates based on the Gridded Population of the World Ver-

sion 4 (GPWv4) dataset from the Center for International Earth Science Information Network

(CIESIN Columbia University 2018). The GPWv4 data contains population statistics from 241

global economies. Data is sourced in most cases from national and local statistical agencies,

and when that is not available, sourced from the United Nations.

The gridded GPWv4 data provides total population estimates at 30 arc-second grids (∼ 1km

at the equator), and is globally disaggregated from official population data at the smallest ad-

ministrative level available. As an illustration, the dataset contains disaggregated population

data from 316,461 Brazilian sectors, 43,878 Chinese townships, 5,967 Indian sub-districts, 774

Nigerian local government areas, and 10,535,212 US census blocks. To allow for the calculation

population-weighted AOD data, we aggregate the GPWv4 population estimates up to 1◦ × 1◦

longitude–latitude grid, which matches up with the resolution of our cell-specific annual av-

erage AOD exposures data.

1. See Appendix Figure E.1 for a visualization of the number of days in 2010 with AOD measurements across
global cells.
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Due to variabilities in census survey and population register data availability, GPWv4 pop-

ulation data are sourced between the years 2001 and 2015, with the center of the calendar year

distribution at around 2010. Specifically, data from 27% of the economies are based on 2010

census and population register data, 62% and 83% of the economies’ data come from within

one and three years of 2010, and about 8% of the economies have data sourced from outside

of four years of 2010. To appropriately match up the time-frame of the population and AOD

data, we use cell-specific annual average AOD exposure data in 2010.

Subnational GDP data We complement global measurements of air pollution by aerosols

and population with data on the relative levels of economic development as captured by GDP

per capita. Specifically, we use national and subnational from the Gridded global datasets for

Gross Domestic Product (Kummu, Taka, and Guillaume 2018), which is based on subnational

GDP per capita data from Gennaioli et al. (2013). The GDP per capita values are adjusted for

purchasing price parity and based on 2005 international dollars.

Gennaioli et al. (2013) collected subnational GDP data from 1569 subnational first-level or

equivalent administrative units from the largest 110 economies up to 2010. These economies

accounted for 97% of global GDP in 2010. Kummu, Taka, and Guillaume (2018) augmented the

dataset with national GDP data from economies without subnational data, filling in missing

subnational GDP values by interpolating based on geographically and temporally neighboring

data-points around missing values, and extended the dataset time-frame to 2015 by extrapo-

lating based on trends up to 2010.

Considering jointly the temporal availability of AOD, pollution, and GDP data, we use the

2010 subnational and national GDP per capita estimates from Kummu, Taka, and Guillaume

(2018).

2.2 Population weighted distributional statistics for AOD

Population-weighted AOD distributions To analyze population-weighted air pollution by

aerosol distributions, we define a discrete distribution of 2010 annual average AOD values

over the set of all populated cells, where the cell-specific population mass is determined by

GPWv4-based population estimates from around 2010. Specifically, let sc be the share of global

population in cell c, ac be the average annual AOD at cell c, and C be the set of all gridded cells

where sc > 0. The global population-weighted annual average AOD distribution function,
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which provides the share of global population experiencing lower than a∗ levels of annual

average AOD, is equal to:

F(a∗) = P(a < a∗) =
∑
c∈C

sc · 1 {ac < a∗} . (1)

To compare aerosol distributions conditional on regional groupings based on suprana-

tional, national, and subnational boundaries, we define Cr ⊆ C as the set of populated cells

that intersect with the boundary enclosures of supranational, national, or subnational loca-

tion r. For boundary data, we use national boundary data available in the GPWv4 population

dataset (CIESIN Columbia University 2018), and the subnational boundary data embedded in

the subnational GDP data from (Kummu, Taka, and Guillaume 2018). The share of popula-

tion in cell c conditional on location grouping r is sc,r = sc
(
∑

ĉ∈Cr
sĉ)

, and the locational AOD

distribution function is:

Fr(a
∗) = Pr(a < a∗) =

∑
c∈Cr

sc,r · 1 {ac < a∗} . (2)

Given the locational distribution function, we compute key distributional statistics for each

location r. The mean and variance of the location r-specific distributions are

µr =
∑
c∈Cr

sc,r · ac

and σ2
r =

∑
c∈Cr

sc,r · (ac − µr)
2 .

(3)

The global weighted mean is µglobal =
∑

c∈C sc · ac. In our empirical analysis, we compute

global, continental, regional, national, and subnational population weighted annual mean

AOD exposures.

Given the discrete mass distribution over cells, the location distribution function Fr(a
∗) is

not invertible. Hence, we define the τth percentile of the locational distribution as the mini-

mum a∗ value where the share of population in location r with less than a∗ level of annual

average AOD is greater or equal to τ
100 , specifically:

percentiler(τ) = min
{
a∗ : Fr(a

∗) ⩾
τ

100

}
. (4)

Discussions in our empirical analysis focus on location-specific 20th and 80th as well as 10th and
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90th percentiles, and use relative percentile ratios as an additional measures for within location

distributional variabilities.

Relative exposure and excess burden To measure relative exposures, we compute what we

call excess aerosol burden, ec,r̂, which is the percentage deviation between cell-specific AOD

value ac and location-specific AOD value average µr̂:

ec,r̂ =
ac − µr̂

µr̂

=
ac

µr̂

− 1 . (5)

When r̂ includes all global cells, we have ec,global, the global excess aerosol burden. We also

divide weighted mean from location r against that of another location r̂:

er,r̂ =
µr − µr̂

µr̂

=
µr

µr̂

− 1 . (6)

When r is a country and r̂ includes all global cells, ecountry,global is the country-specific excess

aerosol burdens relative to the global mean. A global excess aerosol value of 0 indicates that

a location has the same AOD measure as the global mean, and a value of 0.5 or −0.5 indicates

that a location’s AOD measure is 50 percent greater or smaller than the global mean.

As an additional interpretation of the ratio of the weighted means of a subset over a super-

set, er,global can also be expressed as:

er,global =

Location r pop-weighted pollution share︷ ︸︸ ︷((∑
c∈Cr

sc
)
· µr

µglobal

)
(∑

c∈Cr

sc

)
︸ ︷︷ ︸

Location r population share

− 1 =
µr

µglobal
− 1 . (7)

A value of 0.5 or −0.5 for er,global indicates that location r’s share of global population-weighted

air pollution is 50 percent greater or smaller than location r’s share of global population.

AOD and PM2.5 As a satellite-based measure of air pollution by aerosols, AOD measure-

ments increase with greater concentrations of atmospheric particles, including PM2.5 particles.

While our analysis is focused on the distribution of air pollution by aerosols as measured

by AOD, to help provide additional interpretation of our AOD results, in our presentation

and discussion of results, we provide results both in AOD as well as in estimated AOD-
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transformed PM2.5 scales.

While AOD captures directly visibility experiences, the best-fitting model that maps be-

tween atmospheric aerosol measurements and on-the-ground ambient particulate matter ex-

posure experienced by people is parameterized by heterogeneous topological and meteoro-

logical circumstances (Chu et al. 2016; Holben et al. 1998; Van Donkelaar et al. 2016; Yang

et al. 2019). Overall, atmospheric-based AOD measures have been found to substantively

and positively correlate with ground-based aerosol and PM2.5 measurements (Bibi et al. 2015;

Bright and Gueymard 2019; Chu et al. 2016), and AOD is often used as a predictor of ambient

PM2.5 exposures with locally and temporally calibrated prediction functions (Chen et al. 2022;

Fu et al. 2018; Yang et al. 2019).

To create a globally consistent and transparent scale, we use a global linear model to relate

our AOD estimates to existing global estimates of PM2.5. Specifically, we relate the cell-specific

annual average AOD values we derived to global gridded estimates of surface PM2.5 concen-

tration derived based on models that use satellite-based AOD measures as inputs and ground-

based PM2.5 data for calibration and model validation (Hammer et al. 2020). Regressing the

PM2.5 values from Hammer et al. (2020) on our AOD measures, we find that a bivariate linear

model with subregion fixed effects provides a reasonable global fit with an R2 of 0.78. We ob-

tain similar fit and estimates when we restrict the data to only populated cells or when we use

all available cells, and higher polynomial orders do not significantly improve the fit.

In our results discussions, we also compare the AOD-transformed PM2.5 measures to the

WHO interim targets for particulate matter air pollution.2 These targets are used as guidelines

for classifying the severity of PM2.5 exposures. The WHO guideline recommends lowering

annual average exposure levels to less than 35µg/m3, 25µg/m3, 15µg/m3, and 10µg/m3 as

interim targets 1, 2, 3, and 4.

3 Within and across country distributions of air pollution by aerosols

Combining global AOD measures and population data, we present in this section the over-

all population-weighted global distribution of air pollution by aerosols. In contrast to prior

studies on global population-based inequality in ambient air pollution, which have focused on

comparing means across regions and countries (Shaddick et al. 2018; Van Donkelaar et al. 2021;

2. The report can be found here https://www.who.int/publications/i/item/9789240034228
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Van Donkelaar et al. 2016), we study global inequalities based by conducting comparisons

within and across region as well as countries.

3.1 Global distributions

Overall global distribution Figure ?? presents histograms for the global relative distribution

of air pollution by aerosols, measured in units of excess aerosol burden. The country-based

result in Panel (a) shows the country-aggregate population weighted distribution of country-

specific within-country population-weighted means. The cell-based distribution in Panel (b)

uses cell-specific results, weighted by cell-specific population estimates.3

Panel (a)’s country-level distribution of global excess aerosol burden ranges from -0.81 to

1.18, and has an 80th percentile that is 1.44 times larger relative to its 20th percentile. In contrast,

Panel (b)’s cell level distribution of global excess aerosol burden ranges from approximately

-1.0 to 10.06, and has an 80th percentile that is 3.62 times more exposed than the 20th per-

centile. Comparisons between the panels demonstrate that country-level information, even

when properly weighted by within country distributions, masks the inequalities across cells

within countries. Our analysis in the following sections focus on population-weighted cell-

based distributions.

Global dispersion map Figure 1 presents a global map of the relative distribution of air pol-

lution by aerosols in Panel (a). The map matches cell-specific AOD to cell locations. The colors

correspond to levels of global excess aerosol burdens—darker shades of green (red) represent

greater magnitudes of negative (positive) excess burdens.

The map shows that Asia and Africa have relatively higher levels of air pollution by aerosols.

Focusing on countries, India, China, and Pakistan stand out as large countries with areas expe-

riencing high levels of excess aerosol burdens. In contrast, Australia, Mexico, and Argentina

are also large economies, but have relatively lower levels of excess aerosol burdens. Addi-

tionally, there are variations in the within-country heterogeneities of exposures. For example,

locations in the southeastern and northwestern regions of China have high excess burdens,

but areas in northern and southwestern China have relative lower levels of excess burdens. In

contrast, countries within Western Europe and North America tend to have limited variations

concentrated around lower levels of excess burdens.

3. In Appendix Figure E.7, we present un-weighted histograms.
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While the world map provides a useful visualization of the global dispersion of air pollu-

tion, it does not show the relative population shares facing these heterogeneous burdens across

locations.

Population-weighted distributions across continents In Panel (b) of Figure 1, we present

continent-specific air pollution distributions that combine the distributions of population and

excess aerosol burdens across cells.

Comparing continents at the extremes, the average individual in Asia is 3.32 times more

exposed to air pollution by aerosols than the average individual in Oceania. Asia and Oceania

have average excess burdens of 0.26 (≈ 29.10µg/m3 of PM2.5) and -0.63 (≈ 8.76µg/m3 of

PM2.5). This means that Asia’s and Oceania’s global shares of air pollution by aerosols are 26%

larger and 63% smaller than their global population shares, respectively.

Africa has the second highest mean exposure with a approximate average PM2.5 value of

19.91µg/m3, followed by Europe and the Americas at 14.32µg/m3 and 12.11µg/m3. Oceania

is the only continent with average PM2.5 reaching WHO interim target 4, which suggests that

a considerable share of the world lives in places where air pollution by aerosol exposures are

above recommended healthy condition levels.

In addition to the means, the Panel (b) of Figure 1 also shows heterogeneities in the population-

weighted dispersion of excess aerosol burdens within each continent. The Americas, Europe,

and Oceania have distributions with relatively limited variabilities. Europe is the most equal

continent in the world where population at the 80th percentile of excess aerosol burden are

only 28% more exposed than those at the 20th percentile. In contrast, distributions in Africa

and Asia are more dispersed. Populations at the 80th percentile of the aerosol distribution are

141% and 109% more exposed than population at the 20th percentile in Africa and Asia, re-

spectively. Further at the tails, the exposure faced by populations at the 90th percentile of the

aerosol distribution are 227% and 185% higher than those at the 10th percentile in Africa and

Asia, respectively.

3.2 Distributions across and within regions and countries

In this section, we decompose the global air pollution by aerosol distribution into sub-continental

region- and nation-specific components. We present the results in continent-specific Figures 3

to 4. In each figure, Panel (a) presents air pollution by aerosol distributions by sub-continental
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group (e.g., Northern Africa, East Asia), and Panel (b) highlights the 20th and 80th percentiles

and means of country-specific distributions. Both results are based on population-weighted

cell-level results.

There are substantial differences in means and variabilities across sub-continental regions.

In terms of means, Eastern Asia has the highest mean AOD of 0.66 (≈ 33.68µg/m3 of PM2.5),

which is just below WHO interim target 1. Australia and New Zealand have the lowest mean

AOD of 0.11 (≈ 7.65µg/m3 of PM2.5), which has reached WHO interim target 4. In terms

of variabilities, the ratios of exposure for populations at the 80th to 20th percentiles for sub-

continental regions range between 1.02 to 3.08, and the 90th to 10th percentile ratios range

between 1.06 to 4.31.

Inequalities within Africa Figure 3 shows air pollution by aerosol distributions across cells

in the Eastern, Middle, Northern, Southern, and Western Africa regions as well as the variation

in cell-level measurments within the countries that fall under these regions. Results show

substantial heterogeneities in within-region aerosol exposures.

Western Africa has the highest average annual AOD at 0.51 (≈ 26µg/m3 of PM2.5), almost

reaching WHO interim target 2. Southern Africa has the lowest average annual AOD at 0.14

(≈ 9.05µg/m3 of PM2.5), which exceeds WHO interim target 4.

The most populous African country, Nigeria, has an annual average AOD of 0.56 (≈ 28.98µg/m3

of PM2.5), which is behind WHO interim target 2. Nigeria’s average exposure level corre-

sponds to a global excess aerosol burden of 0.24, meaning that Nigeria’s global share of air

pollution by aerosols is 24% larger than its population share. Exposure inequalities are signif-

icant within Nigeria—Nigerian population at the 80th (90th) percentile of aerosol distribution

are 77% (106%) more exposed than those at the 20th (10th) percentile. One of the least populous

countries in Africa, Sao Tome and Principe, has an average annual AOD of 0.47 (≈ 24.65µg/m3

of PM2.5), just passing WHO interim target 2. In contrast to Nigeria, relative population expo-

sure percentiles are close to 1 due to the small size of the country.

At 0.66 (≈ 35.18µg/m3 of PM2.5), the Congolese population faces the highest average an-

nual AOD in Africa, which lags behind WHO interim target 1. Congo’s global share of air

pollution by aerosols is 53% larger than its population share. Exposure inequalities are lim-

ited within Congo—Congolese population at the 80th (90th) percentile of aerosol distribu-

tion are 15% (22%) more exposed than those at the 20th (10th) percentile. In contrast, at 0.09
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(≈ 6.42µg/m3 of PM2.5), the population in Lesotho faces the lowest average annual AOD av-

erage in Africa, which significantly surpasses WHO interim target 4. Lesotho’s global share

of air pollution by aerosols is 81% smaller than its population share. Exposure inequalities

are limited except at the far tails within Lesotho— the Lesothoan population at the 80th (90th)

percentile of aerosol distribution are 0% (40%) more exposed than those at the 20th (10th) per-

centile.

Inequalities within Americas Figure 5 shows air pollution by aerosol distributions for coun-

tries in the Caribbean, Central America, Northern America, and South America. Compared to

Africa and Asia, distributions in regions in the Americas have limited variabilities.

South America has the highest average annual AOD at 0.22 (≈ 12.93µg/m3 of PM2.5). Cen-

tral America has the lowest average annual AOD at 0.19 (≈ 11.65µg/m3 of PM2.5). All regions

in the Americas, on average, have reached WHO interim targets 3.

The most populous country in the Americas, the United States of America, has an annual

average AOD of 0.19 (≈ 11.67µg/m3 of PM2.5), close to reach WHO interim target 4. The

US’s average exposure level corresponds to a global excess aerosol burden of -0.56, meaning

that the US’s global share of air pollution by aerosols is 56% smaller than its population share.

Exposure inequalities are important but limited in the US—Americans population at the 80th

(90th) percentile of aerosol distribution are 36% (71%) more exposed than those at the 20th (10th)

percentile. One of the least populous countries in the Americas, Saint Lucia, has an average

annual AOD of 0.21 (≈ 12.49µg/m3 of PM2.5). Relative population exposure percentiles is

equal to 1 in Saint Lucia.

At 0.34 (≈ 18.55µg/m3 of PM2.5), Colombian population face the highest average annual

AOD in the Americas, which is behind WHO interim target 3. Colombia’s global share of

air pollution by aerosols is 24% smaller than its population share. Exposure inequalities are

important but limited within Colombia—Colombian population at the 80th (90th) percentile of

aerosol distribution are 28% (55%) more exposed than those at the 20th (10th) percentile. In con-

trast, at 0.10 (≈ 7.27µg/m3 of PM2.5), population in Chile face the lowest average annual AOD

in the Americas, which achieves WHO interim target 4. Chile’s global share of air pollution by

aerosols is 77% smaller than its population share.
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Inequalities within Asia Figure 2 shows air pollution by aerosol distributions for countries

in Central, Eastern, Southeastern, Southern, and Western Asia. Results show substantial het-

erogeneities in within-region and within-country aerosol exposures.

Eastern Asia has both the highest average levels of exposure and variabilities in expo-

sures, and Central Asian has the lowest. Eastern Asia has an average annual AOD of 0.66

(≈ 33.68µg/m3 of PM2.5). Eastern Asian population at the 80th percentile of aerosol distri-

bution are 158% more exposed than those at the 20th percentile, and its population at the 90th

percentile of aerosol distribution are 223% more exposed than those at the 10th percentile. Cen-

tral Asia has an average annual AOD of 0.36 (≈ 19.49µg/m3 of PM2.5), reaching WHO interim

target 3. Central Asia’s population at the 80th (90th) percentile of aerosol distribution are 64%

(110%) more exposed than those at the 20th (10th) percentile.

The most populous Asian country, China, has an annual average AOD of 0.7 (≈ 35.58µg/m3

of PM2.5), which is behind WHO interim target 1, indicating very hazardous levels of average

air pollution by aerosols. China’s average exposure level corresponds to a global excess aerosol

burden of 0.55, meaning that China’s global share of air pollution by aerosols is 55% larger than

its population share. Exposure inequalities are large within China— the Chinese population

at the 80th (90th) percentile of aerosol distribution are 111% (216%) more exposed than those

at the 20th (10th) percentile. One of the least populous countries in Asia, Qatar, has an aver-

age annual AOD of 0.60, which is similar to the level in China. Relative population exposure

percentiles are equal to 1 due to the geographical confines of Qatar.

In Asia, populations in Kuwait and East Timor are at the opposite ends of the air pollution

by aerosol exposure spectrum. Both countries’ relative within country exposure percentiles are

close to 1. At 0.99 (≈ 49.06µg/m3 of PM2.5), the Kuwaiti population faces the highest average

annual AOD in Asia, which is substantially behind WHO interim target 1. In contrast, at 0.17

(≈ 10.74µg/m3 of PM2.5), East Timor population have the lowest average annual AOD in Asia,

almost reaching WHO interim target 4. In terms of global excess aerosol burdens, Kuwait’s

share of global ambient air pollution by aerosol is 118% larger than its global population share,

and East Timor’s air pollution share is 60% less than its population share.

Inequalities within Europe Figure 4 shows air pollution by aerosol distributions for coun-

tries in Eastern, Northern, Southern, and Western Europe. Compared to Africa and Asia, dis-

tributions in European regions have limited variabilities.
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Eastern Europe has the highest average annual AOD at 0.28 (≈ 15.53µg/m3 of PM2.5), just

reaching WHO interim target 3. Southern Europe has the lowest average annual AOD at 0.21

(≈ 12.51µg/m3 of PM2.5), exceeding interim target 3.

The most populous European country, Russia, has an annual average AOD of 0.29 (≈

16.39µg/m3 of PM2.5), which is behind WHO interim target 3. Russia’s average exposure level

corresponds to a global excess aerosol burden of -0.34, meaning that Russia’s global share of

air pollution by aerosols is 34% smaller than its population share. Exposure inequalities are

significant within Russia—Russian population at the 80th (90th) percentile of aerosol distribu-

tion are 67% (130%) more exposed than those at the 20th (10th) percentile. One of the least

populous countries in Europe, Iceland, has an average annual AOD of 0.21 (≈ 12.68µg/m3

of PM2.5), close to reaching WHO interim target 4. Despite its limited population, there are

exposure variabilities in Iceland due to its large geography—Icelandic population at the 80th

(90th) percentile of aerosol distribution are 39% (49%) more exposed than those at the 20th (10th)

percentile.

Russia has the highest average annual AOD in Europe. In contrast, at 0.15, population in

Norway face the lowest average annual AOD in Europe. Norway’s global share of air pollution

by aerosols is 65% smaller than its population share. Exposure inequalities are limited but

present in Norway—Norwegian population at the 80th (90th) percentile of aerosol distribution

are 21% (31%) more exposed than those at the 20th (10th) percentile.

Inequalities within Oceania Figure 6 shows air pollution by aerosol distributions for coun-

tries in Oceania, which has a small number of countries dominated in population by Australia,

Papua New Guinea, and New Zealand. Melanesia has the highest average annual AOD at 0.20

(≈ 12µg/m3 of PM2.5), which is just above WHO interim target 4. As a region, Australia and

New Zealand have the lowest average annual AOD at 0.11 (≈ 7.65µg/m3 of PM2.5), which ex-

ceeds WHO interim target 4. Compared to the rest of the world, all populated cells in Oceania

have relative low levels of air pollution by aerosol exposures.

4 Air pollution by aerosols and GDP per capita

In this section we analyze the national and subnational level relationships between air pol-

lution by aerosols, as measured by AOD, and economic development, as measured by GDP
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(PPP-adjusted) per capita (Gennaioli et al. 2013; Kummu, Taka, and Guillaume 2018). Specif-

ically, we regress GDP per capita on global excess aerosol burdens at the national and sub-

national levels. We allow for homogeneous or heterogeneous bivariate relationships across

continents and account for continental and sub-continental regional fixed effects. We present

our results in Table 1 and Figure 7. Results from various estimations jointly inform the di-

rection and magnitude of the GDP and aerosol association globally and for each continent,

and explain whether the findings are due to across region—variations in regional means—or

within region—variations in national and subnational values conditional on regional means—

associations.

Global association In this section, we analyze the global association between air pollution

by aerosols and GDP per capita. We find a strong negative association using both national and

subnational data, which are largely explained by associations of continental means.

In Table 1, the global country-level result from column (1) of Panel (a) presents the slope

from a bivariate regression of excess aerosol burden on GDP per capita, treating each country

with equal weight. We find an estimated slope of -0.075 (s.e. 0.018). This means that a dou-

bling of GDP per capita is associated with a reduction of a country’s excess aerosol burden

by 7.5 percentage points—this is a 7.5 percentage points reduction in the percentage devia-

tion between the country-specific AOD value and the global mean. In column (2) of Panel (a),

we incorporate country-specific weights, which leads to a doubling of the slope coefficient to

-0.144 (s.e. 0.023). This means that countries with larger population tend to have a stronger

negative aerosol to GDP associations.

Given the large heterogeneities in within country air pollution by aerosol distribution as

well as large heterogeneities in economic development within countries, patterns based on

national aggregates might differ from subnational results. In columns (4) and (5) of Panel

(a), we estimate the same relationships as in columns (1) and (2) of Panel (a), but using more

granular subnational data. We find similar negative slopes of -0.083 (s.e. 0.007) and -0.118 (s.e.

0.008) from the equal weight and population-weighted results.

In both national and subnational regressions, variations in global GDP per capita explain

a significant proportion of variabilities in excess aerosol burden. From the national results,

for the unweighted and weighted regressions, 9% and 19% of the variabilities in air pollution

by aerosols are accounted for by variabilities in GDP per capita, respectively. For subnational
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results, the shares of variabilities explained are still substantially at 4% and 5% for the un-

weighted and weighted regressions, respectively.

There are large differences in mean levels of economic development and air pollution across

continents, as is visible from the differentiated concentration of countries from each continent

along the x-axis and y-axis in Figure 7. Specifically, Africa and Asia populate all the quad-

rants of the figure. In contrast, Europe, the Americas, and Oceania are concentrated in the

lower quadrants with dispersion in economic activities but limited variations in air pollution.

We analyze the extent to which the air pollution by aerosol and GDP per capita association

just documented is explained by the association in continental-level means. We accomplish

this in columns (3) and (6) of Panel (a) by introducing continental-level fixed effects to the

weighted national and subnational regressions from columns (2) and (5). Globally, we con-

tinue to find that higher GDP per capita is associated with less aerosol exposures, but the

relationship is significantly weakened—the national-level slope estimate is -0.037 (0.024) and

the subnational-level slope estimate is -0.009 (0.009). This result indicates that continental-level

mean correlations explain most of the global aerosol and GDP correlation.

Continent-specific Associations In this section, we allow for heterogeneous associations be-

tween air pollution by aerosols and GDP per capita in each continent. The previous section

assumed that this association is homogeneous across all countries, but depending on the pre-

dominant stage that countries in a continent are undergoing, the relationship between air pol-

lution and economic development might differ. For example, in developing economies like

India, it may be the case that having higher income is connected to living in areas that are

more polluted whereas in developed economies like Germany, higher wealth instead affords

one the ability to live in a less polluted area. In Panel (b) of Table 1, we present estimates for

continent-specific associations by allowing for both continent-specific fixed effects as well as

continent-specific slopes.

Focusing on the national and subnational population-weighted results in columns (2) and

(5) in Panel (b), we find significant variations in the magnitudes of aerosol and GDP associa-

tion by continents. We find positive slopes for Africa with estimates of 0.023 (s.e. 0.054) and

0.052 (s.e. 0.020) using national and subnational data. The subnational estimate shows that a

doubling of GDP per capita for a subnational unit in Africa is associated with a 5.2 percent-

age points increase in the percentage deviation between the subnational AOD value the the
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global mean, meaning that a national increase in GDP per capita is actually associated with an

exacerbation of pollution inequality across the continent. In contrast, we find significant neg-

ative associations in Europe, the Americas, and Oceania, with slopes estimates of -0.016 (s.e.

0.006), -0.019 (s.e. 0.005), and -0.071 (s.e. 0.006) from the subnational results. These indicate

that in these areas, higher levels of economic development is associated with lower levels of air

pollution by aerosol. Our results for Asia are statistically insignificant, indicating a lack of rela-

tionship between economic development and air pollution at the continental level across Asia.

We present continent-specific scatter plots using national and subnational data in Appendix

Figure E.10.

In columns (3) and (6) of Panel (b), we continue to analyze continent-specific correlations

after adding in sub-continental regional group fixed effects. We previously documented sig-

nificant heterogeneities in sub-continental regional air pollution by aerosol distributions, es-

pecially in Asia and Africa. Within each continent, regional average associations between

economic development and air pollution could reinforce or mask the GDP and aerosol as-

sociations across subnational economic units within each region.

Including subcontinental regional fixed effects and focusing on the subnational results from

column (6), our results for Africa, the Americas, Oceania, and Asia are in the same direction

but stronger compared to results from column (5) without the subcontinental regional fixed

effects. Specifically, we find a positive slope estimate of 0.088 (s.e. 0.023) for Africa. For the

Americas and Oceania, we find slope estimates of -0.022 (0.008) and -0.077 (s.e. 0.009). For

Asia, the insignificant negative association from column (5) is strengthened to a negative slope

of -0.099 (s.e. 0.022)—this means that a doubling of GDP per capita for a subnational unit in

Asia is associated with a 9.9 percentage points reduction in the percentage deviation between

the subnational AOD value the the global mean. The strengthening of the magnitudes of the

slope estimates indicates that the association between GDP and aerosols across subcontinental

regions and within subcontinental regions tend to be in opposite directions, especially for Asia.

In contrast to the other continents, in Europe, the slope switches signs after including sub-

continental regional fixed effects, column (6) reports a positive slope of 0.053 (s.e. 0.008). This

means that looking only at within region variations in GDP and aerosols, a doubling of GDP

per capita for a subnational unit in Europe is associated with a 5.3 percentage points increase in

the percentage deviation between the subnational AOD value the the global mean. The switch

in the sign of the slope indicates that in Europe, regions with higher average GDP per capita
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tend to have lower average levels of air pollution by aerosols, but controlling for regional

means, subnational units with higher GDP tend to have higher air pollution.

5 Discussion and Conclusion

In this paper, using data from around 2010—the most recent year around which reliable granu-

lar global population, air pollution by aerosol, and GDP per capita data are jointly available—

we document the global relative distribution of air pollution by aerosols across and within

regions and countries, and we analyze the global and continental associations between air

pollution by aerosol and GDP per capita.

Our focus on population-weighted distribution of air pollution contrasts with much of the

focus in the scientific literature on climate change, which focuses largely on the distribution of

climatic burden across locations, with relatively little attention to the relative population expo-

sures to climatic burdens across AND within locations (Mehta et al. 2016; Tian et al. 2023). This

paper follows recent works that have combined global gridded population with air pollution

data (Shaddick et al. 2018; Van Donkelaar et al. 2021; Van Donkelaar et al. 2016), which have

generally focused on analyzing variabilities in regional and national means as well as aggre-

gate distributions for large supra-national groupings. In contrast, our population weighted

analysis decomposes the overall global population-weighted air pollution by aerosol distribu-

tion into both across and within region and country components.

The results suggest the existence of pollution inequalities across locations over the globe,

with Asian population facing the highest average exposure, followed by populations in Africa,

Europe, the Americas, and Oceania. At the continental extremes, Asia’s global shares of air

pollution by aerosols is 26% larger than its population share, but Oceania’s is 63% smaller. We

find that the Americas, Europe, and Oceania have distributions with relatively limited vari-

abilities. Europe is the most equal continent in the world with population at the 80th percentile

of air pollution by aerosol exposure only 28% more exposed than those at the 20th percentile.

In contrast, in Africa and Asia, populations at the 80th percentile of the air pollution by aerosol

distribution are 141% and 109% more exposed than population at the 20th percentile, respec-

tively. Across subcontinental regions, the percentage increases in exposure between the 80th

and 20th percentiles range from 2% to 208%. This range widens further to from 0% to 359%

when we condition further on within country air pollution by aerosol distributions.
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The paper also provides evidence about the relationship between pollution burden and

economic activity measured by GDP per capita. Overall, we find a strong negative global cor-

relation. In particular, using subnational population-weighted data, we find that a doubling of

GDP per capita is associated with a 11.8 percentage points reduction in the percentage devia-

tion between the a subnational unit’s population-weighted air pollution by aerosol level and

the global population-weighted mean. The association is significantly weakened when conti-

nental fixed effects are included, which means the global association is largely explained by

correlation between continental-level mean GDP per capita and air pollution by aerosol.

Furthermore, we analyze the GDP and air pollution relationship within each continent.

Exploiting variabilities in subnational data and controlling for aggregate regional variabili-

ties through subcontinental regional fixed effects, we find a positive association between air

pollution by aerosols and GDP per capita in Africa and Europe, but negative association in

the Americas, Asia, and Oceania. Specifically, we find the strongest negative association in

Asia and the strongest positive association in Africa—a doubling of GDP per capita for a sub-

national unit in Asia and Africa are associated with a 9.9 percentage points reduction and

8.8 percentage points increase in the percentage deviation between the a subnational unit’s

population-weighted air pollution by aerosol level and the global population-weighted mean,

respectively.

There are limitations to our analysis. First, our analysis is centered around one year. While

it would be of great interest to compare changes over time, the population census and register

data we rely on are from different years centered around 2010 (CIESIN Columbia University

2018), and the subnational GDP dataset we use only has data up to 2010 (Gennaioli et al. 2013)

and requires extrapolation to extend the dataset to later years (Kummu, Taka, and Guillaume

2018). Second there are trade-offs between the granularity of cells at which we merge popu-

lation and air pollution by aerosol data and the precision and availability of cell-specific aver-

ages. We use 1◦ × 1◦ longitude–latitude grid, which reduces the precision of our population-

weighted air pollution by aerosol estimates for smaller countries, but improves the number of

raw satellite-based measurements we can draw on to measure air pollution by aerosol expo-

sures for each cell. Third, rather than using climate models to transform AOD to particulate

matter measurements (Hammer et al. 2020), for transparency and to reduce the number of in-

termediating estimation and approximation layers between raw satellite data measurements

and inputs for empirical analysis, we use AOD-based measures directly to assess the global
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distribution of air pollution by aerosols. We present results in AOD levels and in units of

relative global excess aerosol burdens. Given the importance of particulate matter to human

health, we also provide approximately translated PM2.5 values to facilitate the interpretation

of our AOD-based results.
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Figure 1: Continental population-weighted distribution of air pollution by aerosols, 2010

(a) 1◦ cell (1◦ × 1◦ longitude–latitude grid) as the unit of observation map

(b) 1◦ cell as the unit of observation (weighted by cell-population), by regions

Excess aerosol burden relative to the global weighted mean

Notes: The panels present the global relative distribution of air pollution by aerosols as measured by Aerosol
Optical Depth (AOD). We compute annual average AOD for each 1◦ cell. The map in Panel (a) matches cell-
specific AOD to cell locations. The distribution in Panel (b) uses cell-specific AOD, weighted by cell-specific
population estimates. The y-axis in Panel (b) shows cell population weighted density approximations. The
colors in Panel (a) and x-axis in Panel (b) correspond to what we call global excess aerosol burden: A value of
0.5 (-0.5) indicates that a cell’s AOD measure is 50 percent greater (smaller) than the global weighted mean.
In Panel (b), darker shades of green (red) correspond to greater magnitudes of negative (positive) excess
burdens.
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Figure 2: Asian population-weighted distribution of air pollution by aerosols, 2010

(a) 1◦ cell as the unit of observation (weighted by cell-population), by sub-regions

Excess aerosol burden relative to the global weighted mean

(b) Country-specific distributional ranges: P20 (left-dot), mean (center-dot), P80 (right-dot)

AOD (< 0.1 indicates crystal clear sky and AOD of 1 indicates very hazy conditions)

C
ou

nt
ry

-s
pe

ci
fic

po
pu

la
ti

on
(i

n
lo

g
ba

se
10

un
it

s)

Notes: The panels present the Asian distribution of air pollution by aerosols as measured by Aerosol Optical Depth
(AOD). We compute annual average AOD for each 1◦ cell. Panel (b) lines mark the 20th percentile, mean, and the
80th percentile of a country’s AOD distribution, computed based on the distribution of AOD and population across
cells corresponding to each country. In Panel (a), the y-axis shows cell population weighted density approximations.
The x-axis in Panel (a) corresponds to levels of excess aerosol burden, a value of 0.5 (-0.5) indicates that a cell’s AOD
measure is 50 percent greater (smaller) than the global weighted mean. The x-axis in Panel (b) is in AOD units and
tick-labels show AOD values. The vertical dashed lines corresponding to PM 2.5 thresholds in µg/m3 units according
to WHO interim targets (ITs). Background color corresponds to the IT ranges, with darker colors indicating lower air
quality thresholds.
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Figure 3: African population-weighted distribution of air pollution by aerosols, 2010

(a) 1◦ cell as the unit of observation (weighted by cell-population), by sub-regions

Excess aerosol burden relative to the global weighted mean

(b) Country-specific distributional ranges: P20 (left-dot), mean (center-dot), P80 (right-dot)

AOD (< 0.1 indicates crystal clear sky and AOD of 1 indicates very hazy conditions)
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Notes: The panels present the African distribution of air pollution by aerosols as measured by Aerosol Optical Depth
(AOD). We compute annual average AOD for each 1◦ cell. Panel (b) lines mark the 20th percentile, mean, and the
80th percentile of a country’s AOD distribution, computed based on the distribution of AOD and population across
cells corresponding to each country. In Panel (a), the y-axis shows cell population weighted density approximations.
The x-axis in Panel (a) corresponds to levels of excess aerosol burden, a value of 0.5 (-0.5) indicates that a cell’s AOD
measure is 50 percent greater (smaller) than the global weighted mean. The x-axis in Panel (b) is in AOD units and
tick-labels show AOD values. The vertical dashed lines corresponding to PM 2.5 thresholds in µg/m3 units according
to WHO interim targets (ITs). Background color corresponds to the IT ranges, with darker colors indicating lower air
quality thresholds.
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Figure 4: European population-weighted distribution of air pollution by aerosols, 2010

(a) 1◦ cell as the unit of observation (weighted by cell-population), by sub-regions

Excess aerosol burden relative to the global weighted mean

(b) Country-specific distributional ranges: P20 (left-dot), mean (center-dot), P80 (right-dot)

AOD (< 0.1 indicates crystal clear sky and AOD of 1 indicates very hazy conditions)
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Notes: The panels present the European distribution of air pollution by aerosols as measured by Aerosol Optical Depth
(AOD). We compute annual average AOD for each 1◦ cell. Panel (b) lines mark the 20th percentile, mean, and the
80th percentile of a country’s AOD distribution, computed based on the distribution of AOD and population across
cells corresponding to each country. In Panel (a), the y-axis shows cell population weighted density approximations.
The x-axis in Panel (a) corresponds to levels of excess aerosol burden, a value of 0.5 (-0.5) indicates that a cell’s AOD
measure is 50 percent greater (smaller) than the global weighted mean. The x-axis in Panel (b) is in AOD units and
tick-labels show AOD values. The vertical dashed lines corresponding to PM 2.5 thresholds in µg/m3 units according
to WHO interim targets (ITs). Background color corresponds to the IT ranges, with darker colors indicating lower air
quality thresholds.
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Figure 5: American population-weighted distribution of air pollution by aerosols, 2010

(a) 1◦ cell as the unit of observation (weighted by cell-population), by sub-regions

Excess aerosol burden relative to the global weighted mean

(b) Country-specific distributional ranges: P20 (left-dot), mean (center-dot), P80 (right-dot)

AOD (< 0.1 indicates crystal clear sky and AOD of 1 indicates very hazy conditions)
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Notes: The panels present the American distribution of air pollution by aerosols as measured by Aerosol Optical Depth
(AOD). We compute annual average AOD for each 1◦ cell. Panel (b) lines mark the 20th percentile, mean, and the 80th
percentile of a country’s AOD distribution, computed based on the distribution of AOD and population across cells
corresponding to each country. In Panel (a), the y-axis shows cell population weighted density approximations. The x-
axis in Panel (a) corresponds to levels of excess aerosol burden, a value of 0.5 (-0.5) indicates that a cell’s AOD measure
is 50 percent greater (smaller) than the global weighted mean. The x-axis in Panel (b) is in AOD units and tick-labels
show AOD values. The vertical dashed lines corresponding to PM 2.5 thresholds in µg/m3 units according to WHO
interim targets (ITs). Background color corresponds to the IT ranges, with darker colors indicating lower air quality
thresholds.
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Figure 6: Oceanian population-weighted distribution of air pollution by aerosols, 2010

(a) 1◦ cell as the unit of observation (weighted by cell-population), by sub-regions

Excess aerosol burden relative to the global weighted mean

(b) Country-specific distributional ranges: P20 (left-dot), mean (center-dot), P80 (right-dot)

AOD (< 0.1 indicates crystal clear sky and AOD of 1 indicates very hazy conditions)
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Notes: The panels present Oceanian distribution of air pollution by aerosols as measured by Aerosol Optical Depth
(AOD). We compute annual average AOD for each 1◦ cell. Panel (b) lines mark the 20th percentile, mean, and the
80th percentile of a country’s AOD distribution, computed based on the distribution of AOD and population across
cells corresponding to each country. In Panel (a), the y-axis shows cell population weighted density approximations.
The x-axis in Panel (a) corresponds to levels of excess aerosol burden, a value of 0.5 (-0.5) indicates that a cell’s AOD
measure is 50 percent greater (smaller) than the global weighted mean. The x-axis in Panel (b) is in AOD units and
tick-labels show AOD values. The vertical dashed lines corresponding to PM 2.5 thresholds in µg/m3 units according
to WHO interim targets (ITs). Background color corresponds to the IT ranges, with darker colors indicating lower air
quality thresholds.
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Figure 7: Global association between air pollution by aerosols and GDP per capita, 2010

(a) National scatter plot, continental color groups, circle size represents relative population sizes

GDP (PPP-adjusted) per capita (in log base e units)
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(b) National scatter plot, national population-
weighted bivariate regression line

GDP (PPP-adjusted) per capita (in log base e units)
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(c) Subnational scatter plot, subnational popula-
tion weighted bivariate regression line

GDP (PPP-adjusted) per capita (in log base e units)
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Notes: Panels (a) and (b) present national aggregates. Panel (c) presents subnational—first-level subna-
tional administrative division—results. Across the panels, the x-axes correspond to levels of economic
development as measured by GDP (Purchasing Price Parity adjusted) per capita in log base e units, and
the y-axes correspond to relative exposures to air pollution by aerosols as measured by Aerosol Optical
Depth (AOD). In Panel (a), colors distinguish countries by continental groupings, and the size of the
scatter points are proportional to population sizes of each country. Additionally, in Panel (a), the black
lines mark global weighted averages along each axis and divide countries into four quadrants for rela-
tive comparisons: upper-right, higher GDP per capita and AOD; upper-left, lower GDP per capita and
higher AOD; bottom-left, lower GDP per capita and AOD; and bottom-right, higher GDP per capita
and lower AOD. The y-axes across panels are in units of what we call global excess aerosol burden:
A value of 0.5 (-0.5) indicates that a national or subnational unit’s AOD measure is 50 percent greater
(smaller) than the global weighted mean. We compute annual average AOD for each cell (1◦ × 1◦ lon-
gitude–latitude grid) and then generate national and subnational AOD as cell-population weighted
averages. Subnational GDP and boundaries come from Kummu, Taka, and Guillaume (2018).
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Table 1: Global association between air pollution by aerosols and GDP per capita, 2010

Dependent variable: global excess aerosol burden

National regressions Subnational regressions

(1) (2) (3) (4) (5) (6)

(a): Common-slope global regressions

GDP (PPP-adjusted) per capita (in log base e units)

× Global -0.075*** -0.144*** -0.037 -0.083*** -0.118*** -0.009
(0.018) (0.023) (0.024) (0.007) (0.008) (0.009)

R2 0.09 0.19 0.57 0.04 0.05 0.37
Observations 178 178 178 3,902 3,712 3,709

Population weights No Yes Yes No Yes Yes
Continental fixed effects No No Yes No No Yes

(b): Continent-specific slope regressions

GDP (PPP-adjusted) per capita (in log base e units)

× Africa -0.031 0.023 0.032 0.099*** 0.052** 0.088***
(0.053) (0.054) (0.060) (0.027) (0.020) (0.023)

× Americas -0.031 -0.027 -0.074* -0.057*** -0.019*** -0.022***
(0.021) (0.018) (0.041) (0.011) (0.005) (0.008)

× Asia -0.013 -0.053 -0.253*** -0.030 -0.026 -0.099***
(0.044) (0.054) (0.045) (0.022) (0.021) (0.022)

× Europe -0.019 -0.037** 0.032 -0.055*** -0.016** 0.053***
(0.014) (0.014) (0.020) (0.006) (0.006) (0.008)

× Oceania -0.040*** -0.065*** -0.064** -0.061*** -0.071*** -0.077***
(0.013) (0.005) (0.024) (0.012) (0.006) (0.009)

Observations 178 178 178 3,902 3,712 3,709

Population weights No Yes Yes No Yes Yes
Continental fixed effects Yes Yes Yes Yes Yes Yes
Sub-continental fixed effects No No Yes No No Yes

Note: * p < 0.1; ** p < 0.05; *** p < 0.01. We regress global excess aerosol burden—which cap-
tures global relative exposures to air pollution by aerosols as measured by Aerosol Optical Depth
(AOD)—on GDP (Purchasing Price Parity adjusted) per capita in log base e units. Results in Panel
(a) present the global association, and results in Panel (b) allow for continent-specific associations.
In columns (1)–(3), we use country-level data; in columns (4)–(6), we use subnational—first-level
subnational administrative division—data. Results from columns (1) and (4) give equal weights
to each national and subnational unit. Results from columns (2) and (5) use national or subna-
tional population weights. In Panel (a), results from columns (3) and (6) control for continental
fixed effects. In Panel (b), all columns allow for continent-specific slopes and intercepts, and
columns (3) and (6) also control for sub-continental fixed effects for each sub-region shown in
Panel (a) from Figures 3–4 (e.g., Northern Africa, East Asia, etc.). The dependent variable across
regressions is in units of what we call global excess aerosol burden: A value of 0.5 (-0.5) indicates
that a national or subnational unit’s AOD measure is 50 percent greater (smaller) than the global
weighted mean. We compute annual average AOD for each cell (1◦ × 1◦ longitude–latitude grid)
and then generate national and subnational AOD as cell-population weighted averages. Subna-
tional GDP and boundaries come from Kummu, Taka, and Guillaume (2018). See Figure 7 and
Appendix Figure E.10 for scatter plots corresponding to panels (a) and (b).
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ONLINE APPENDIX

Population burdens of air pollution around the world: Distributions,
inequalities, and links to per capita GDP

Angelo Santos, Oscar Morales, Jere R. Behrman, Emily Hannum, Fan Wang

A Method

Population-weighted AOD distributions To analyze population-weighted air pollution by

aerosol distributions, we define a discrete distribution of 2010 annual average AOD values

over the set of all populated cells, where the cell-specific population mass is determined by

GPWv4-based population estimates from around 2010. Specifically, let sc be the share of global

population in cell c, ac be the average annual AOD at cell c, and C be the set of all gridded cells

where sc > 0. The global population-weighted annual average AOD distribution function,

which provides the share of global population experiencing lower than a∗ levels of annual

average AOD, is equal to:

F(a∗) = P(a < a∗) =
∑
c∈C

sc · 1 {ac < a∗} . (8)

To compare aerosol distributions conditional on regional groupings based on suprana-

tional, national, and subnational boundaries, we define Cr ⊆ C as the set of populated cells

that intersect with the boundary enclosures of supranational, national, or subnational loca-

tion r. For boundary data, we use national boundary data available in the GPWv4 population

dataset (CIESIN Columbia University 2018), and the subnational boundary data embedded in

the subnational GDP data from (Kummu, Taka, and Guillaume 2018). The share of population

in cell c among population within location grouping r is sc,r = sc
(
∑

ĉ∈Cr
sĉ)

, and the location-

specific AOD distribution function is:

Fr(a
∗) = Pr(a < a∗) =

∑
c∈Cr

sc,r · 1 {ac < a∗} . (9)

Given the location-specific distribution function, we compute mean exposure for each loca-
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tion r:

µr =
∑
c∈Cr

sc,r · ac . (10)

The global weighted mean is µglobal =
∑

c∈C sc · ac. In our empirical analysis, we compute

global, continental, regional, national, and subnational population weighted annual mean

AOD exposures.

Given the discrete mass distribution over cells, the location-specific distribution function

Fr(a
∗) is not invertible. Hence, we define the τth percentile of the location-specific distribution

as the minimum a∗ value where the share of population in location r with less than a∗ level of

annual average AOD is greater or equal to τ
100 , specifically:

percentiler(τ) = min
{
a∗ : Fr(a

∗) ⩾
τ

100

}
. (11)

Discussions in our empirical analysis focus on location-specific 20th and 80th as well as 10th

and 90th percentiles, and use relative percentile ratios as a key measure for within location

distributional variabilities.

Relative exposure and excess burden To measure relative exposures, we compute what we

call excess aerosol burden: ec,r̂ is the excess aerosol burden of cell c with respect to location

r̂, and it measures the percentage deviation between cell-specific AOD value ac and location-

specific AOD value average µr̂:

ec,r̂ =
ac − µr̂

µr̂

=
ac

µr̂

− 1 . (12)

When r̂ includes all global cells, we have ec,global, the cell-specific global excess aerosol burden.

We also compute er,r̂, which is the excess aerosol burden of location r with respect to loca-

tion r̂, where r̂ (e.g., continent) encompasses r (e.g., countries within continent). Specifically,

we compute the percentage deviation between the population-weighted mean exposure from

location r and location r̂:

er,r̂ =
µr − µr̂

µr̂

=
µr

µr̂

− 1 . (13)

When r includes all cells within a country and r̂ includes all global cells, ecountry,global provides
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the country-specific excess aerosol burden relative to the global mean. If ecountry,global = 0,

a country’s mean exposure level is the same as the global mean. A value of 0.5 or −0.5 for

ecountry,global = 0 indicates that a country’s population-weighted AOD measure is 50 percent

greater or smaller than the global population-weighted mean.

Importantly, excess aerosol burden also captures the percentage deviation between the

share of ambient pollution that a population group is exposed to and the share of population

they account for. Specifically, er,r̂ can also be expressed as:

er,global =

Location r global pop-weighted pollution share︷ ︸︸ ︷((∑
c∈Cr

sc
)
· µr

µglobal

)
(∑

c∈Cr

sc

)
︸ ︷︷ ︸

Location r global population share

− 1 =
µr

µglobal
− 1 . (14)

Because the term
(∑

c∈Cr
sc
)
· µr appears in both the numerator and the denominator, it can-

cels out. A value of 0.5 or −0.5 for er,global indicates that location r’s share of global population-

weighted air pollution is 50 percent greater or smaller than location r’s share of global popula-

tion.

AOD and PM2.5 As a satellite-based measure of air pollution by aerosols, AOD measure-

ments increase with greater concentrations of atmospheric particles, including PM2.5 particles.

While our analysis is focused on the distribution of air pollution by aerosols as measured by

AOD, to assist with the interpretation of the magnitudes of AOD results, in the presentation

and discussion of our AOD results, we match measured AOD values to approximate ranges of

PM2.5 values.

While AOD captures directly visibility experiences, the best-fitting model that maps be-

tween atmospheric aerosol measurements and on-the-ground ambient particulate matter ex-

posure experienced by people is parameterized by heterogeneous topological and meteoro-

logical circumstances (Chu et al. 2016; Holben et al. 1998; Van Donkelaar et al. 2016; Yang

et al. 2019). Overall, atmospheric-based AOD measures have been found to substantively

and positively correlate with ground-based aerosol and PM2.5 measurements (Bibi et al. 2015;

Bright and Gueymard 2019; Chu et al. 2016), and AOD is often used as a predictor of ambient

PM2.5 exposures with locally and temporally calibrated prediction functions (Chen et al. 2022;

Fu et al. 2018; Yang et al. 2019).
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To create a globally consistent and transparent scale, we use a global linear model to relate

our AOD estimates to existing global estimates of PM2.5. Specifically, we relate the cell-specific

annual average AOD values we derived to global gridded estimates of surface PM2.5 concen-

tration derived based on models that use satellite-based AOD measures as inputs and ground-

based PM2.5 data for calibration and model validation (Hammer et al. 2020). Regressing the

PM2.5 values from Hammer et al. (2020) on our AOD measures, we find that a bivariate linear

model with subregion fixed effects provides a reasonable global fit with an R2 of 0.78. We ob-

tain similar fit and estimates when we restrict the data to only populated cells or when we use

all available cells, and higher polynomial orders do not significantly improve the fit.

In our results discussions, we also compare the AOD-transformed PM2.5 measures to the

WHO interim targets for particulate matter air pollution.A.1 These targets are used as guide-

lines for classifying the severity of PM2.5 exposures. The WHO guideline recommends lower-

ing annual average exposure levels to less than 35µg/m3, 25µg/m3, 15µg/m3, and 10µg/m3

as interim targets 1, 2, 3, and 4.

Within and across country distributions of air pollution by aerosols Combining global

AOD measures and population data, we present in this section the overall population-weighted

global distribution of air pollution by aerosols. In contrast to prior studies on global population-

based inequality in ambient air pollution, which have focused on comparing means across re-

gions and countries (Shaddick et al. 2018; Van Donkelaar et al. 2021; Van Donkelaar et al. 2016),

we study global inequalities based by conducting comparisons within and across region as

well as countries.

A.1. The report can be found here https://www.who.int/publications/i/item/9789240034228
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B Data

B.1 AOD

AOD is a measurement of the size of particles present in the Earth’s atmosphere, determined

by their capacity to absorb and reflect light. This measurement depends on factors such as the

composition, size, and concentration of the particles.

The NASA Aerosol Optical Depth (AOD) dataset is a publicly available collection of level-2

processed satellite images. Specifically, the AOD data is computed based on images collected

by the TERRA satellite via MODIS instruments, and is accessible via NASA EarthData’s Open-

DAP protocol. (Cornillon, Gallagher, and Sgouros 2003; Xiong et al. 2020)

The AOD dataset has been continuously updated since 2002, with new satellite images

regularly added. The satellite used to capture these images is TERRA, equipped with the

MODIS (or Moderate Resolution Imaging Spectroradiometer) instrument, which provides a

spatial resolution of 3km and a temporal resolution of 5 minutes. After capturing the images,

a processing algorithm is used to extract information about the aerosol properties and produce

the AOD measurement.

In our analysis, we collect AOD measurements for each 3km x 3km cell across the globe

and aggregate them into 1-degree latitude and longitude combinations (∼ 110km x 110km) .

Figure E.1 illustrates the global availability of the AOD measures in 2010. This figure plots

the frequency of AOD measures for 1-degree latitude-longitude combinations, showing that

a considerable share of them are covered for more than a third of the year. However, some

places where it is hard to process the satellite images do not have information, such as deserts

and ice coverage.

The AOD measurement has been widely utilized in scientific research as a predictor of

pollution, particularly in estimating the concentration of PM2.5 particles (Chen et al. 2022; Fu

et al. 2018; Yang et al. 2019). The correlation documented suggests that higher values of AOD

are positively correlated with higher levels of PM2.5, i.e. more air pollution. (Bibi et al. 2015;

Bright and Gueymard 2019; Chu et al. 2016)

The availability of this global dataset allows us to conduct comprehensive analyses of air

pollution exposure on a global scale, as well as the ability to focus on specific regions or areas

of interest.
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B.1.1 Data download

To Access the data, it is necessary to register a user and key in the Nasa EarthData website

(Free registration) It allows one to create a connection with OpenDAP servers. OpenDAP is an

extensively used cloud service used by dataset providers to store big datasets. In the case of

NASA, creating an OpenDAP connection to make queries allows the user to access the AOD

dataset at the finest level directly from your command prompt. This makes the process lighter

as the user does not need to download the datasets to process them.

B.1.2 Aggregation over space along satellite track

Let AOD denote Let x and y index latitude and longitude respectively. c = (x,y) is a vector of

coordinates. Let t index time. Across time, NASA TERRA satellite, captures AOD data within

a parallelogram with vertices {cvt }v∈{TL,TR,BL,BR}.

As mentioned before, the satellite data information collected from NASA has finer data as

3kmx3km. However, to merge the pollution information with the SEDAC population dataset,

we aggregated the cells into one-degree combinations. The aggregation was done using a ceil-

ing round method, which rounded all the latitude and longitude information to 1 degree. For

instance, if one location is identified by latitude 49.568 and longitude -34.543, the aggregation

method will transform this geo-location into 49 (lat) and -34 (long). After rounding latitude and

longitude columns, we took the average AOD associated with a particular latitude-longitude

1-degree combination.

In figure E.4 we plot the 1 degree x degree yearly measurements for 6 big cities in the world

to illustrates how the cell annual average AOD is computed. On the x axis we have the days

within the months, which are plotted on the y axis. For each combination of month-day we

have either a missing (white cells) due to lack of observations in that particular day, or average

AOD on that day (colorful cells). The cell average AOD is calculated by taking the mean of

these values.

In figure E.4, we can also see that the NASA AOD measures capture higher concentrations

of pollution in cities well known for their higher concentration of pollutants, as Beijing and

New Delhi. Comparing these two cities with other cities plotted in E.4, we can see that the

frequency of darker colors is higher across and within months compared to other locations.
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B.2 The location X day file

Using OpenDap we could access all days of the year 2010 and construct a dataset that links

locations and days. The first column will have the 1-degree combinations of latitude and lon-

gitude, where other columns correspond to the AOD measures of these locations on each day

of the year. Using this location day information, we can create our measure of average AOD

concentration in each cell in the world. The number of observations per cell depends on the

ability of the algorithm to capture light, which is influenced by some factors such as clouds,

desert, and ice. To deal with this problem, we use interpolation methods in our dataset.

B.2.1 Interpolation at time and location with missing information

The AOD dataset has global coverage but this coverage does not happen daily. Due to the

satellite orbit, some cells are not going to be covered every day, which creates potential missing

in the daily information. Another issue is the incapacity of the algorithm to process images

from deserts, oceans, or ice due to refraction. This also creates potential missing values in

the dataset. For example, the Sahara desert region does not have much information due to

the impossibility of processing the image in desert conditions. Based on these issues, we can

observe missings in two dimensions: time and location.

To test how sensitive our results are to these missing, we used interpolation methods to

produce interpolated datasets based on the original AOD data. We used the Python package

numpy (LINK) which contains implemented interpolation functions that can be applied to

our dataset. Additionally, we perform interpolation using one dimension (location) and two

dimensions (location, time).

Figure E.1 illustrates the global availability of the AOD measures in 2010. This figure plots

the frequency of AOD measures for 1-degree latitude-longitude combinations, showing that

a considerable share of them are covered for more than a third of the year. However, some

places where it is hard to process the satellite images do not have information, such as deserts

and ice coverage.

The figure shows the number of days in 2010 during which AOD data was available within

each cell. The days are represented through shades of red from the darkest red (0 days) to the

lightest red (all days in the year).

On days in which we do not have available AOD information for a particular cell, we use
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information in neighboring locations and time periods to perform 3-dimensional—longitude,

latitude, and time—interpolation and extrapolation to generate estimates for missing AOD

data.

Given daily information, we compute annual average AOD exposures for each cell, first

using only the raw data ignoring the days with missing values, and then separately using the

raw data complemented with the interpolated and extrapolated estimates. Figure E.5 shows

the distribution of our annual average AOD values at the cell level.

Due to the concentration of missing AOD data in regions with the least population, our

population-weighted AOD distributional results based on the raw data and interpolated and

extrapolated data are very similar. Our global inequality results presented in the text are based

on annual averages of the raw data.

B.3 SEDAC Population file

SEDAC stands for Socioeconomic Data and Applications Center and is a center that relates

earth science data to socioeconomic data. Specifically, in this analysis, we are exploiting the

Gridded Population of the World version 4 (GPWv4) (CIESIN Columbia University 2018)

which presents the estimates of the global population by gender and by age groups. These

estimates come from the Population census or each country’s population register. The data on

the boundary comes from various sources including the GADM database of Global Admin-

istrative Areas, the Bureau of Statistics, the UN Office for the Coordination of Humanitarian

Affairs, and the Center for International Earth Science Information Network (CIESIN) which

hosts the SEDAC databases. Thus, the GPWv4 combines country-based administrative level

data and administrative boundary data and distributes them into 30 arc-second grids (∼ 1km at

the equator) using a proportional allocation. The distribution by age and gender is done by us-

ing the proportion of males, females, and different age groups in each geographic unit and by

applying those proportions to the 2010 estimates of the population in those same geographic

units.

In our analysis, we used the 1-degree resolution (∼ 110km) version of the data to create some

input files for further analysis. We use the geographic information available to create unique

geo-code IDs that will allow us to uniquely identify each grid. We used the population data

available by groups and created different population groups by gender. It is good to be precise

that the age groups are 5-years age groups and we have 14 different age groups ranging from
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0-4 to 65-over. At the end, we get 28 different age × gender groups and then link those unique

location IDs to the 28 different population groups.

Figure E.6 illustrates the global population distribution based on the SEDAC dataset in

2010, we plot the share of the world’s population per cell. Some locations well known for their

population sizes, such as India and China appear as hot spots in the heat map.

B.4 Subnational GDP data

The gridded global GDP dataset used in this paper is a product from the Gridded global

datasets for Gross Domestic Product (Kummu, Taka, and Guillaume 2018). This data is de-

rived from subnational GDP per capita data from Gennaioli et al. 2013, with the GDP per

capita values adjusted for purchasing price parity and based on 2005 international dollars.

B.4.1 Source of data for GDP and Pop

For GDP per capita at the country level, we are using the World Bank’s publicly available

databases. This database has information on countries’ GDP and is linked with the ISOCODE

and ISONAMES for each country. Using these codes, we can merge the GDP and the pollution

measures by using our key location files, which are all linked through the 1-degree geolocation

combinations.

To get the country population info, we aggregated all the cell information within a country

to get its population estimation using SEDAC. However, this method may have been issued

due to the size of the cells, which led us to use other population data sources as robustness.

B.5 Merging and National and subnational boundaries

We combine the 2010 annual average AOD across 1◦ cell with the cell-specific total population

estimates from around 2010. Because cells without any population will not impact popula-

tion weighted statistics, we select the subset of of cells from the annual average AOD vector

which has corresponding non-zero cell-specific population estimates. Additionally, to allow

for the comparisons of population-weighted AOD distributions across and within countries

and economies, we identify the subset of populated-cells that intersect with national-level

boundary enclosures. To consider the relationship between population-weighted AOD distri-

bution and GDP per capita at the subnational level, we also identify subsets of populated-cells
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that interesect with subnational boundary data embedded in the subnational GDP data from

(Kummu, Taka, and Guillaume 2018).

B.5.1 Country Boundaries

To identify which country is associated with the 1-degree latitude longitude combinations, we

use SEDAC as the input data. The raster from SEDAC has two layers that inform the country in

a particular degree combination. First, they inform the ISOCODE, an international standard-

ized code for each country. Two, they also inform the international standardized acronyms

for these countries. For example, Brazil’s ISOCODE is 076 and its acronym is BRA. With this,

we can create our country key file linking degree combinations and country information, as

region and subregion. The input data used by SEDAC to categorize these boundaries are the

censuses.

The fact that we are using 1-degree latitude longitude combinations can lead to imprecise

borders due the the size of the cells. 1 degree corresponds to approximately 111 km, which can

incorporates full cities. For example, figure E.3 shows how the cells are allocated to different

countries in the world. We can see that the size of cell makes the allocation of some land to

countries that it is not actually precise. For example, NASA’s categorize part of Peru, Bolivia,

Paraguay, and Uruguay to Brazil. This can impact the measurements if this include major

cities or populated areas. An specific case is Santiago in Chile, which is allocated to Argentina

due the size of the cells. Because of this, a important part of Chile that concentrates 40 % of

its population and the most polluted region is allocated to Argentina. This can impact the

inequality and mean measures of countries depending on its size and shape.

B.5.2 How do we use it, matching of coordinates to boundaries

To match these coordinates we created a file called skeleton, which includes all the 1-degree

combinations in the world. Using SEDAC, we can build a dataset with three columns, lati-

tude and longitude combination (one degree), ISOCODE, and ISONAME. After merging these

files, we can use it to merge with our population data also linked using the latitude-longitude

combinations.
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C Integrating Climatic and Population Data

C.1 Program and Framework for analysis

The key file inputs make possible the merge between the geocoded pollution, population, and

country datasets. In our analysis, we used two file inputs:

1. key_loc.csv

2. key_country_code_finer_subregions.csv.

The first key file has an id for every latitude-longitude combination at 1 degree level. The

IDs were constructed using the following pattern. The latitude and longitude numbers were

transformed into strings and concatenated (using "_" to separate the numbers) into one string

called "geo_id ". For example, the location defined by latitude 45 and longitude -67 has the

geo_id as "45_-67". After constructing all the possible geo_ids combinations, we sorted the

location by latitude and longitude and assigned a number to each geo_id following the as-

cending order. This new column is called id_location and it is used to merge locations across

different datasets, such as the pollution and the population geocoded information.

The second key file has the id_location and geo_id columns associated with geographical

locations in the world. four layers of location: continent, subregion, and country. For instance,

we know what are the latitude and longitude combinations that are associated with specific

continents, sub-regions, and countries, which makes it possible to merge geocoded informa-

tion from other datasets.
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D Additional Results on heat exposure for children

D.1 Overall global distribution

D.1.1 Global country-level distribution

Figure E.7 presents histograms for the global relative distribution of air pollution by aerosols

as measured by Aerosol Optical Depth (AOD). The x-axis is in units of global excess aerosol

burdens. We compute annual average AOD for each 1◦ × 1◦ longitude–latitude grid (cell) and

generate country-specific AOD measures as cell-population weighted averages. The country-

based distribution in Panel (a) uses country-specific AOD, weighted by aggregate population

estimates for each country. The cell-based distribution in Panel (b) uses cell-specific AOD,

weighted by cell-specific population estimates. The population weights are important because

distributions where national or subnational units have equal weights mask the heterogeneous

population burdens of exposure across geographical units.D.1

The variance for the cell-based distribution of in Panel (b) is 1.7 times larger than the

country-based distribution in Panel (a), illustrating the wider distribution at the cell level. Ad-

ditionally, Panel (a)’s country-level distribution of global excess aerosol burden ranges from

-0.81 to 1.18, and has an 80th percentile that is 1.44 times larger relative to its 20th percentile. In

contrast, Panel (b)’s cell level distribution of global excess aerosol burden ranges from approx-

imately -1.0 to 10.06, and has an 80th percentile that is 3.62 times more exposed than the 20th

percentile.

Comparisons between the Panels demonstrate that country-level information masks the

inequalities across cells within countries. Our analysis in the following sections focus on

population-weighted cell-based distributions.

D.1.2 Global cell-level distribution

Panel (a) of Figure 1 presents a global map of the relative distribution of air pollution by

aerosols - calculated according to equation (??) - matching cell-specific AOD to cell locations.

The colors correspond to levels of global excess aerosol burdens—darker shades of green (red)

represent greater magnitudes of negative (positive) excess burdens.

D.1. In Appendix Figure E.7, we present un-weighted histograms. Comparing the distributions with and without
weights, we can see a shift of the weighted distributions to the right. These shifts highlight the importance of
considering the population weights, as our interest is how individuals in countries are exposed to air pollution.
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The map shows that Asia and Africa have relatively higher levels of air pollution by aerosols.

Focusing on countries, India, China, and Pakistan stand out as large countries with areas expe-

riencing high levels of excess aerosol burdens. In contrast, Australia, Mexico, and Argentina

are also large economies but have relatively lower levels of excess aerosol burdens. Addi-

tionally, there are variations in the within-country heterogeneities of exposures. For example,

locations in the southeastern and northwestern regions of China have high excess burdens, but

areas in northern and southwestern China have relatively lower levels of excess burdens. In

contrast, countries within Western Europe and North America tend to have limited variations

concentrated around lower levels of excess burdens.

D.2 Regional distribution

D.2.1 Africa

The most populous African country, Nigeria, has an annual average AOD of 0.56 (≈ 28.98µg/m3

of PM2.5), which is behind WHO interim target 2. Nigeria’s average exposure level corre-

sponds to a global excess aerosol burden of 0.24, meaning that Nigeria’s global share of air

pollution by aerosols is 24% larger than its population share. Exposure inequalities are signif-

icant within Nigeria—Nigerian population at the 80th (90th) percentile of aerosol distribution

are 77% (106%) more exposed than those at the 20th (10th) percentile. One of the least populous

countries in Africa, Sao Tome and Principe, has an average annual AOD of 0.47 (≈ 24.65µg/m3

of PM2.5), just passing WHO interim target 2. In contrast to Nigeria, relative population expo-

sure percentiles are close to 1 due to the small size of the country.

D.2.2 Americas

South America has the highest average annual AOD at 0.22 (≈ 12.93µg/m3 of PM2.5). Central

America has the lowest average annual AOD at 0.19 (≈ 11.65µg/m3 of PM2.5). All regions in

the Americas, on average, have reached WHO interim targets 3.

The most populous country in the Americas, the United States of America, has an annual

average AOD of 0.19 (≈ 11.67µg/m3 of PM2.5), close to reach WHO interim target 4. The

US’s average exposure level corresponds to a global excess aerosol burden of -0.56, meaning

that the US’s global share of air pollution by aerosols is 56% smaller than its population share.

Exposure inequalities are important but limited in the US—Americans population at the 80th
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(90th) percentile of aerosol distribution are 36% (71%) more exposed than those at the 20th (10th)

percentile. One of the least populous countries in the Americas, Saint Lucia, has an average

annual AOD of 0.21 (≈ 12.49µg/m3 of PM2.5). Relative population exposure percentiles is

equal to 1 in Saint Lucia. Not all countries with low population have no within-country expo-

sure variabilities. Suriname, which is another low population country in the Americas, has a

similar AOD level as Saint Lucia, but greater within-country variabilities—Surinamese popu-

lation at the 20th percentile of aerosol distribution are 36% more exposed than those at the 80th

percentile.

D.2.3 Asia

The most populous Asian country, China, has an annual average AOD of 0.7 (≈ 35.58µg/m3 of

PM2.5), which is behind WHO interim target 1, indicating very hazardous levels of average air

pollution by aerosols. China’s average exposure level corresponds to a global excess aerosol

burden of 0.55, meaning that China’s global share of air pollution by aerosols is 55% larger than

its population share. Exposure inequalities are large within China— the Chinese population at

the 80th (90th) percentile of aerosol distribution are 111% (216%) more exposed than those at the

20th (10th) percentile. One of the least populous countries in Asia, Qatar, has an average annual

AOD of 0.60, which is similar to the level in China. Relative population exposure percentiles

are equal to 1 due to the geographical confines of Qatar.

D.2.4 Europe

The most populous European country, Russia, has an annual average AOD of 0.29 (≈ 16.39µg/m3

of PM2.5), which is behind WHO interim target 3. Russia’s average exposure level corresponds

to a global excess aerosol burden of -0.34, meaning that Russia’s global share of air pollution by

aerosols is 34% smaller than its population share. Exposure inequalities are significant within

Russia—Russian population at the 80th (90th) percentile of aerosol distribution are 67% (130%)

more exposed than those at the 20th (10th) percentile. One of the least populous countries in

Europe, Iceland, has an average annual AOD of 0.21 (≈ 12.68µg/m3 of PM2.5), close to reach-

ing WHO interim target 4. Despite its limited population, there are exposure variabilities in

Iceland due to its large geography—Icelandic population at the 80th (90th) percentile of aerosol

distribution are 39% (49%) more exposed than those at the 20th (10th) percentile.
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D.2.5 Oceania

Australia is the most populated country in the Oceania region and the least populated is Palau.

In AOD terms, the mean exposure to pollution in Australia is 0.11, whereas the inequality

measured using the ratio between 80th and the 20th percentiles indicates 29% more exposure

to pollution to the upper side of the distribution. If we consider the extremes percentiles ra-

tios, the 90th percentile is 48% more exposed to pollution in comparison to the 10th percentile.

For Palau, the mean AOD exposure is 0.13, whereas the inequality using the percentile ratios

in 1.03 and 1.03 for both ratios, indicates 3% more exposure faced by the upper part of the

distribution. In PM2.5 terms, the mean exposure faced by Australia is 21.23, higher than the

third worse level recommendation by WHO, and the inequality measure for the 80th measure

is 19% and 30% for the 90th percentile ratio. For Palau, the pm is 2.5. measures imply a mean

exposure of 8.89 (below WHO guidelines) and the ratio for both inequality measures is 1.02,

i.e., 2% more exposure faced by the upper part of the population distribution.
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E Additional Figures and Tables

Figure E.1: Number of days with AOD data available for each 1◦ × 1◦ longitude–latitude grid,
2010

Notes: The figure presents the geographical and temporal availability of Aerosol Optical Depth (AOD)
data, our global proxy for ambient particulate matter pollution exposures. For our analysis, we down-
load raw AOD data available at 3km× 3km resolution and compute average daily AOD on each day of
the year with available AOD measurements for each 1◦ × 1◦ longitude–latitude grid (cell). The figure
shows the number of days in 2010 during which AOD data was available within each cell. The days are
represented through shades of purple and pink from the darkest purple (1 day) to the lightest pink (al-
most all days in the year); days with zero data are represented by a gray color. Due to the concentration
of missing AOD data in regions with the least population, our population-weighted AOD distributional
results based on the raw data and interpolated and extrapolated data are very similar. Our global in-
equality results presented in the text are based on annual averages of the raw data.
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Figure E.2: Population shares in areas with no raw AOD measurements 1◦ × 1◦ longi-
tude–latitude grid, 2010

Notes: The figure plots the population shares of areas for which no AOD measurements exist. The share
of global population represented by all colored areas amounts to just 0.00602 with 99.8% of cells in this
section having a population share below the mean population share (0.000128) in areas with existing
AOD measurements. Similarly, 85.8% of cells in this area have values below the median population
measure (0.0000069) in areas for which AOD values exist. This means that above-global-average AOD
measurements would have to had existed in these areas for our global population-weighted AOD mean
to remain the same, otherwise our global mean would be lower than what was calculated meaning
relative burden measures can be considered conservative estimates.
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Figure E.3: 1◦ × 1◦ longitude–latitude grids over select countries

(a) United States of America (b) Brazil

(c) United Kingdom (d) India

Notes: We include plots displaying 1o × 1o boxes corresponding to the area represented by a given
1o × 1o coordinate point, over select countries along a spherical surface. These boxes serve as a visual
illustration of the area along which we aggregate our AOD data for a given day; the average AOD
in a given 1o × 1o area for a given day is then associated to the new 1o × 1o coordinate point. The
classification of a given coordinate as belonging to a given country was determined by NASA’s SEDAC.
Our next figure illustrates several of these daily figures for 1o × 1o areas corresponding to select major
cities across the world. To arrive at the final AOD measurement we use in our analysis, we average
these daily values to arrive at an annualized figure.
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Figure E.4: AOD measurement heatmaps for major cities by 1◦ × 1◦ longitude–latitude grids,
2010

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
DAY

January
February

March
April
May
June
July

August
September

October
November
December

0.39 0.31 0.23 0.10 0.12 0.08

0.34 0.29 0.07 0.06 0.72 0.06 0.08 0.30 0.08 0.05 0.09 0.31 0.52 0.44 0.36 0.10 0.10 0.12

0.10 0.17 0.24 0.30 0.54 0.18 0.25 0.17 0.19 0.08 0.10 0.32 0.14 0.18 0.37 0.53 0.12 0.03

0.60 0.11 0.45 0.38 0.27 0.06 0.04 0.15 0.38 0.21 0.52 0.19 0.36

0.22 0.53 0.38 0.08 0.14 0.26 0.15 0.34 0.18 0.54 0.58 0.23

0.05 0.17 0.05 0.06 0.26 0.06 0.11

0.03 0.07 0.02 0.18 0.06 0.80

0.03 0.05

(a) New York City, United States

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
DAY

January
February

March
April
May
June
July

August
September

October
November
December

0.15

0.28 0.33

0.47 0.50 0.17 0.52 0.44

0.22 0.19 0.89 0.22 0.75 1.40 0.29 1.54 0.21 1.59 0.21 0.89 0.51 0.42 0.28 0.49

0.38 3.65 2.19 0.25 1.67 1.75 0.31 0.42 0.30 0.67 0.75 1.42 0.72 0.25 0.26 1.35 0.82 0.44 0.31 1.35 0.91 0.48 1.21

1.96 1.59 1.08 1.58 1.71 2.03 1.74 1.62 3.03 1.62 1.93 1.97 1.63 0.60 1.60 1.60 0.90 0.70 2.05 1.83 2.41 2.40 3.31

0.28 0.51 0.89 0.15 0.14 0.38 1.41 2.86 2.45 0.50 1.02 1.91 1.91 1.49 1.69 3.25 3.22 3.37

0.44 1.16 2.58 0.37 0.69 2.00 1.28 2.61 0.85 1.00 0.10 0.47 1.40 1.21 0.30 0.41 0.43 0.81 0.55 0.35 0.81 1.77

2.17 0.95 1.35 1.44 0.54 0.31 0.17 0.42 0.59 1.21 3.05 2.68 0.60 0.07 1.04 0.61 0.25 0.10 0.11 0.51 0.73

2.05 0.41 0.19 0.11 0.32 1.13 1.80 1.69 1.87 0.07 0.55 0.69 0.06 0.14 0.35 0.82 0.11 0.15 0.34 0.18 0.15 0.22 0.40

0.18 0.15 0.28 0.23 0.33 1.03 0.30 0.10 0.70 0.45 0.17 0.14 0.22 0.38 0.95 0.20 0.23 0.24 0.19 0.30

0.33 0.22 0.62 0.20 0.18 0.30 0.25 0.83 0.32 0.43 0.29 0.35 0.35 0.41

(b) Beijing, China

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
DAY

January
February

March
April
May
June
July

August
September

October
November
December

0.06 0.11 0.07 0.10 0.25 0.05

0.10 0.23 0.27 0.19 0.14 0.16 0.19 0.31 0.11 0.21

0.06 0.09 0.15 0.13 0.24 0.09 0.04 0.17 0.11 0.34 0.30 0.10 0.09 0.14 0.34 0.38 0.16

0.09 0.27 0.24 0.13 0.50 0.20 0.36 0.07 0.30 0.60 0.14 0.09 0.12 0.20 0.23 0.68

0.36 0.37 0.63 0.13 0.20 0.51 0.53 0.41 0.27 0.34 0.10 0.07 0.08 0.46 0.63 0.30 0.37

0.15 0.05 0.16 0.55 0.37 0.52 0.11 0.14 0.42 0.23 0.12 0.26 0.60 0.31 0.51 0.23 0.21 0.43

0.32 0.42 0.11 0.43 0.41 0.11 0.18 0.11 0.25 0.54 0.72 0.16 0.34 0.36 0.43 0.15 0.52

0.17 0.29 0.15 0.08 0.51 0.18 0.45 0.18 0.29 0.24 0.08

0.39 0.23 0.22 0.40 0.17 0.23 0.27 0.06 0.18 0.17 0.03 0.28 0.21

0.07 0.08 0.11 0.21 0.09 0.08 0.19 0.09 0.06 0.08 0.11 0.05 0.11

0.13 0.03 0.06 0.13 0.07

0.04 0.10

(c) London, United Kingdom

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
DAY

January
February

March
April
May
June
July

August
September

October
November
December

0.96 0.90 1.08 0.89 1.31 0.62 0.79 1.18 0.55 0.92 1.03 1.36 0.92 0.89 0.79 0.77 0.28

0.57 0.71 0.53 0.41 0.47 0.47 0.58 1.09 1.47 0.80 1.55 1.09 0.43 1.07 0.72 1.23 0.33 0.43 0.45 0.40 0.52 0.52 0.82 0.65 0.51 0.50 0.42

0.73 0.55 0.50 1.07 0.37 0.55 0.42 0.48 0.56 0.43 0.51 0.47 0.60 0.46 0.51 0.57 0.53 0.61 0.46 0.45 0.47 0.45 0.51 0.74 0.69 0.50 0.43 0.66 0.71

0.57 0.38 0.44 0.42 0.72 0.37 0.21 0.38 0.41 0.38 0.43 0.49 0.22 0.31 0.36 0.54 0.72 0.66 1.00 0.70 1.02 1.44 0.71 0.41 0.44 0.45 0.72 0.94 0.51 0.57

0.71 0.88 1.17 0.60 1.08 2.05 1.55 0.46 0.93 0.51 0.51 0.31 0.44 0.55 0.40 0.40 0.70 1.26 0.77 0.32 0.25 0.31 0.94 0.69 0.47 0.46 1.22 1.77 1.02 0.42

0.65 1.92 1.58 4.15 0.81 1.61 0.55 0.54 0.57 0.60 0.55 0.74 0.71 0.55 0.38 0.43 0.49 0.66 1.09 2.49 1.84 1.89 1.16 1.41 3.19 2.62

1.79 1.19 1.19 0.90 0.98 0.73 1.68 2.11 0.97 1.74 1.24 2.24 1.64 1.89 1.90 0.29 0.72 1.22

1.01 0.90 0.76 0.62 1.08 1.59 1.22 0.80 1.45 1.19 1.24 2.74 1.85 4.15 1.03

1.24 0.82 0.66 0.75 0.45 0.67 0.59 0.62 0.68 0.50 0.45 0.27 0.34 0.42

0.64 0.94 0.98 0.94 0.91 0.85 1.64 0.98 1.19 0.36 0.32 0.56 0.66 0.61 0.77 0.53 0.50 0.47 0.81 2.09 1.27 0.78 0.41 0.92 1.06 1.42 0.47 0.74 1.03 1.09

1.11 1.05 1.18 1.30 1.05 0.75 0.83 0.82 0.51 1.19 3.53 1.57 1.14 1.03 0.53 0.57 0.79 0.38 0.96 0.38 0.47 0.45 0.40

0.66 0.69 0.81 0.77 0.95 0.59 0.62 0.73 1.01 1.35 0.61 0.47 0.42 0.49 0.53 0.57 0.55 0.61 0.59 0.34 0.69 0.61 0.84 1.10 1.47 1.50 1.04 0.86 0.55

(d) New Dehli, India

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
DAY

January
February

March
April
May
June
July

August
September

October
November
December

0.19 0.22 0.20 0.18 0.27 0.15 0.42 0.19 0.16 0.21 0.20 0.56 0.28

0.08 0.10 0.08 0.16 0.06 0.05 0.09 0.02 0.21 0.15 0.15 0.15 0.10 0.09 0.13 0.22 0.24 0.11 0.13 0.12 0.11 0.23

0.02 0.12 0.05 0.10 0.13 0.13 0.15 0.15 0.36 0.10 0.08 0.11 0.19 0.10 0.06 0.14 0.20 0.17 0.07 0.13 0.29 0.15

0.16 0.22 0.04 0.03 0.07 0.07 0.13 0.08 0.12 0.14 0.13 0.15 0.08 0.24 0.17 0.11

0.05 0.08 0.06 0.10 0.19 0.15 0.09 0.19 0.23 0.15 0.09 0.08 0.15 0.10 0.12 0.17 0.27 0.17 0.04 0.14 0.23 0.20 0.21 0.18 0.18 0.17 0.06

0.12 0.11 0.03 0.03 0.10 0.11 0.28 0.18 0.03 0.07 0.10 0.06 0.10 0.07 0.07 0.09 0.07 0.23 0.07 0.09 0.05 0.08 0.15 0.08

0.09 0.08 0.11 0.11 0.09 0.05 0.07 0.06 0.12 0.25 0.14 0.08 0.22 0.16 0.08 0.09 0.03 0.18 0.10 0.05 0.06 0.18 0.19 0.12 0.14 0.04

0.15 0.59 0.18 0.15 0.03 0.18 0.23 0.45 0.43 0.22 0.41 0.32 0.19 0.02 0.04 0.06 0.22 0.32 0.18 0.15 0.21 0.16 0.19 0.25 0.35 0.33 0.37 0.30

0.11 0.20 0.24 0.18 0.69 0.65 0.10 0.04 0.29 0.21 0.26 1.25 0.97 0.75 1.14 0.46 0.81 0.41 0.43 0.58 0.87

0.55 0.10 0.12 0.20 0.06 0.10 0.38 0.57 0.47 0.10 0.02 0.16 0.15 0.13 0.07 0.13

0.24 0.13 0.19 0.09 0.10 0.07 0.16 0.10 0.10 0.42 0.40 0.16 0.13 0.21

0.28 0.23 0.19 0.26 0.46 0.16 0.20 0.19 0.44 0.13 0.15 0.20 0.28 0.16 0.34 0.22 0.07 0.20

(e) São Paulo, Brazil

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
DAY

January
February

March
April
May
June
July

August
September

October
November
December

0.24 0.31 0.19 0.30 0.34 0.14 0.28 0.23 0.24 0.22 0.71 0.64 0.19 0.25 0.14 0.31 0.39 0.20 0.22 0.16 0.19 0.35 0.13 0.40 0.21 0.52 0.33 1.48 0.29

0.27 0.19 0.29 0.22 0.33 0.22 0.20 0.34 0.18 0.22 0.60 0.35 0.45 0.38 0.41 0.42 0.74 0.51 0.34 0.53 0.25 0.28 0.69 0.52 0.13 0.62

0.35 0.51 0.59 0.31 0.33 0.22 1.68 0.62 0.54 0.74 0.60 0.88 1.04 0.49 0.36 0.31 0.29 0.24 0.35 0.48 0.54 0.79 0.59 0.29 0.44 0.15

0.57 0.60 0.89 0.62 0.29 0.50 0.57 0.64 0.91 0.60 1.26 0.53 0.26 0.49 0.37 0.30 0.58 0.48 1.11 0.22 0.89 0.28 0.34 0.28 0.39 0.84 0.59

0.52 0.36 0.36 0.25 0.21 0.30 0.41 0.90 0.76 0.61 0.29 0.47 0.37 0.49 0.47 1.18 0.84 0.56 0.61 0.42 0.81 0.70 0.30 0.74 2.19 0.47 0.53 0.35 0.48

0.23 1.85 0.25 0.56 0.32 0.35 0.56 0.54 0.29 0.77 0.66 0.68 0.73 0.52 0.64 0.31 0.52 0.49 0.48 0.46 0.24 0.70 0.26 1.01 0.47 0.34 0.51 0.70

0.48 0.67 0.30 0.60 0.37 0.58 0.62 0.67 0.68 0.49 0.63 0.56 0.90 0.38 0.56 0.58 0.74 0.62 0.37 0.56 0.44 0.51 0.49 0.41 0.29 0.59 0.18 0.37 0.42 0.81

0.97 1.05 0.70 0.38 0.32 0.22 0.39 0.38 0.56 0.55 0.43 0.62 0.54 0.69 0.36 0.57 0.48 0.53 0.42 0.40 0.46 0.51 0.60 0.54 0.49 0.74 0.39 0.43 0.26 0.37 0.28

0.44 0.32 0.21 0.27 0.21 0.44 0.31 0.34 0.36 0.34 0.27 0.31 0.67 0.37 0.72 0.60 0.57 0.52 0.60 0.60 0.61 0.26 0.15 0.36 0.34 0.35 0.28

0.34 0.50 0.65 0.56 0.35 0.43 0.38 0.48 0.42 0.42 0.21 0.32 0.30 0.82 0.50 0.58 0.27 0.31 0.58 0.66 0.52 0.38 0.40 0.30 0.33 0.45 0.30 0.32 0.46

0.24 0.23 0.28 0.38 0.37 0.43 0.28 0.29 0.49 0.51 0.35 0.40 0.76 0.41 0.33 0.38 0.42 0.34 0.26 0.32 0.20 0.37 0.18 0.33 0.33 0.31 0.48

0.21 0.33 0.14 0.29 0.64 0.21 0.21 0.21 0.38 0.20 0.49 0.18 0.19 0.24 0.28 0.51 0.77 0.26 0.26 0.43 0.50 0.26 0.25 0.15 0.18 0.21 0.37 0.32

(f) Cairo, Egypt

Notes: We include AOD measurements captured on given days over the year 2010 over single 1o × 1o

grids that capture all or the majority of the area covered by major global cities as an illustration of the
measurements that are used to compute annual averages over a given coordinate point.Cells are colored
along the same scale with darker colors indicating higher AOD values and empty cells indicating that
no data was able to be collected for that day. The coordinate grid that represents a city was chosen by
applying the ceiling function to the longitude and latitude values of a city’s central coordinates. These
chosen cities are visible in the previous figure within their respective country.
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Figure E.5: Daily-averaged-then-annualized AOD values for each 1◦ × 1◦ longitude–latitude
grid, 2010

Notes: The figure presents the Aerosol Optical Depth (AOD) values for each coordinate grid, globally,
as computed by first averaging collected values in a given day for a given coordinate, for each day, then
annualized across daily data, for 2010. Darker shades of orange indicate higher levels of AOD

Figure E.6: GPWv4 population shares for each 1◦ × 1◦ longitude–latitude grid, 2010

Notes: The figure presents raw population figures as part of SEDAC’s GPWv4 population data collec-
tion, for 2010. The units of measurements are cell-level global population shares for every 1o × 1o grid.
Darker shades of blue indicate a higher population share.
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Figure E.7: Global dispersion of air pollution by aerosols, 2010

(a) Country as the unit of observation (equal weight for each country)

Excess aerosol burden relative to the global weighted mean
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(b) 1◦ cell as the unit of observation (equal weight for each cell)

Excess aerosol burden relative to the global weighted mean
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Notes: The panels present the global relative dispersion of air pollution by aerosols as measured
by Aerosol Optical Depth (AOD). We compute annual average AOD for each cell (1◦ × 1◦ longi-
tude–latitude grid) and then generate country-specific AOD as cell-population weighted averages. In
contrast to Figure ??, Panel (a) and (b) here treat each country or cell as a unit of observation with equal
weights. The y-axis shows frequencies, counting the number of countries or cells. The x-axis is in units
of what we call global excess aerosol burden: A value of 0.5 (-0.5) indicates that a country or cell’s AOD
measure is 50 percent greater (smaller) than the global weighted mean.
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Figure E.8: Continental dispersion of air pollution by aerosols, 2010

(a) Country as the unit of observation (weighted by country-population), by continents

Excess aerosol burden relative to the global weighted mean

(b) Country as the unit of observation map

Notes: The panels present the global relative dispersion of air pollution by aerosols as measured by Aerosol
Optical Depth (AOD). We compute annual average AOD for each cell (1◦ × 1◦ longitude–latitude grid) and
then generate country-specific AOD as cell-population weighted averages. In contrast to Figure 1, Panel (a)
treats each country as the unit of observation, weighted by aggregate population estimates for each country,
and Panel (b) matches country-specific AOD to country locations. In Panel (a), the y-axis shows country
population weighted density approximations. The x-axis in Panel (a) and colors in Panel (b) correspond to
what we call global excess aerosol burden: A value of 0.5 (-0.5) indicates that a country’s AOD measure
is 50 percent greater (smaller) than the global weighted mean. In Panel (b), darker shades of green (red)
correspond to greater magnitudes of negative (positive) excess burdens.
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Figure E.9: Continental dispersion of air pollution by aerosols, relative to continent-specific
weighted means, 2010

(a) Africa (b) Americas

(c) Asia

Note: The panels present the continent-specific relative dispersion of air pollution by aerosols as measured by
Aerosol Optical Depth (AOD). We compute annual average AOD for each cell (1◦ × 1◦ longitude–latitude grid)
and then generate country-specific AOD as cell-population weighted averages. The colors in each Panel corre-
spond to levels of what we call continental excess aerosol burden: A value of 0.5 (-0.5) indicates that a country’s
AOD measure is 50 percent greater (smaller) than the continental weighted mean. In all Panels, darker shades of
green (red) correspond to greater magnitudes of negative (positive) excess burdens.

54



Figure E.10: Continental association between air pollution by aerosols and GDP per capita,
2010

(a) National scatter plots, national population weighted bivariate regression lines

GDP (PPP-adjusted) per capita (in log base e units)
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(b) Subnational scatter plots, subnational population weighted bivariate regression
lines

GDP (PPP-adjusted) per capita (in log base e units)
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Notes: Across the panels, the x-axes correspond to levels of economic development as measured by
GDP (Purchasing Price Parity adjusted) per capita in log base e units, and the y-axes correspond to
relative exposures to air pollution by aerosols as measured by Aerosol Optical Depth (AOD). The y-
axes across panels are in units of what we call global excess aerosol burden: A value of 0.5 (-0.5) indi-
cates that a national or subnational unit’s AOD measure is 50 percent greater (smaller) than the global
weighted mean. We compute annual average AOD for each cell (1◦ × 1◦ longitude–latitude grid) and
then generate national and subnational AOD as cell-population weighted averages. Subnational GDP
and boundaries come from Kummu, Taka, and Guillaume (2018). See Figure 7 for global results and see
Table 1 for regression coefficients.
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Table E.1: Continental population-weighted distribution of air pollution by aerosols, 2010

Population weighted means Within-group AOD distributions

Continent AOD Excess aerosol burden P80 to P20 ratio P90 to P10 ratio

Africa 0.37 -0.18 2.78 4.01
Americas 0.21 -0.54 1.56 2.23
Asia 0.57 0.25 2.25 3.18
Europe 0.25 -0.44 1.36 1.68
Oceania 0.14 -0.70 1.76 2.24

Note: The panels present key statistics from the global distribution of air pollution by
aerosols as measured by Aerosol Optical Depth (AOD). In data columns 1 and 2, we
show continent-specific population-weighted means. In data columns 3 and 4, we sum-
marise within-continent AOD distributions using relative percentile ratios. The statis-
tics in this table are computed based on the distribution of AOD and population across
cells (1◦ × 1◦ longitude–latitude grid) corresponding to each continent. More specifi-
cally, the interpretation of AOD is that < 0.1 indicates crystal clear sky and AOD of 1
indicates very hazy conditions. For excess aerosol burden, a value of 0.5 (-0.5) indicates
that a continent’s AOD measure is 50 percent greater (smaller) than the global weighted
mean. Finally, the P80 (P90) to P20 (P10) ratios are based on dividing the 80th (90th)
percentile of the within continent AOD distribution by the 20th (10th) percentile of that
distribution.
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Table E.2: Global AOD in 2010

Location name Excess

burden

Excess

burden

rank

Mean

AOD

exposure

p20 AOD

exposure

P80 AOD

exposure

p80/p20

ratio

p90/p10

ratio

Panel A: Regions

Asia 0.250 1 570.344 348.518 785.792 2.255 3.175

Africa -0.180 2 374.305 193.571 538.424 2.782 4.013

Europe -0.441 3 254.960 212.177 287.689 1.356 1.681

Americas -0.544 4 207.836 156.255 243.476 1.558 2.232

Oceania -0.701 5 136.313 103.840 182.795 1.760 2.241

Panel B: Sub regions

Eastern Asia 0.464 1 668.134 369.572 957.117 2.590 3.240

Southern Asia 0.259 2 574.525 395.941 772.077 1.950 2.269

Western Africa 0.138 3 519.223 378.083 666.123 1.762 2.265

Middle Africa 0.016 4 463.605 305.944 617.175 2.017 2.540

Western Asia -0.144 5 390.507 260.853 509.528 1.953 2.726

South-eastern Asia -0.188 6 370.400 249.775 462.960 1.854 2.457

Northern Africa -0.196 7 366.934 196.316 457.041 2.328 2.936

Central Asia -0.199 8 365.381 266.444 437.113 1.641 2.103

Eastern Europe -0.385 9 280.816 235.193 302.142 1.285 1.737

Western Europe -0.446 10 252.816 219.301 280.139 1.277 1.514

Eastern Africa -0.470 11 241.793 162.009 315.269 1.946 2.636

Caribbean -0.506 12 225.326 199.155 246.721 1.239 1.308

Northern Europe -0.519 13 219.472 180.145 245.138 1.361 1.581

South America -0.523 14 217.508 145.292 308.824 2.126 3.174

Southern Europe -0.526 15 216.390 171.630 249.351 1.453 1.798

Melanesia -0.549 16 205.557 182.795 224.981 1.231 1.674

Northern America -0.562 17 200.015 168.642 226.820 1.345 1.668

Central America -0.566 18 198.101 167.071 228.240 1.366 1.789

Micronesia -0.659 19 155.536 141.417 155.216 1.098 1.333

Southern Africa -0.688 20 142.460 101.679 175.641 1.727 2.105

Polynesia -0.728 21 123.999 122.737 125.451 1.022 1.065

Australia and New

Zealand

-0.753 22 112.690 97.169 125.867 1.295 1.577

Panel C: Countries

Kuwait 1.184 1 996.200 996.200 996.200 1.000 1.000

Iraq 0.723 2 786.001 669.404 746.549 1.115 1.321

Bangladesh 0.690 3 770.832 771.527 785.792 1.018 1.122

Nepal 0.620 4 739.015 686.867 799.155 1.163 1.450

China 0.553 5 708.502 456.094 964.901 2.116 3.163

Congo 0.535 6 699.939 657.733 757.810 1.152 1.229

Mauritania 0.503 7 685.611 226.053 515.221 2.279 18.191

Continued on next page
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Table E.2: Global AOD in 2010

Location name Excess

burden

Excess

burden

rank

Mean

AOD

exposure

p20 AOD

exposure

P80 AOD

exposure

p80/p20

ratio

p90/p10

ratio

Pakistan 0.485 8 677.484 442.175 841.764 1.904 2.322

Gabon 0.431 9 652.738 617.487 688.877 1.116 1.158

Equatorial Guinea 0.420 10 647.543 647.543 647.543 1.000 1.000

Bhutan 0.344 11 613.163 586.935 622.777 1.061 1.061

Qatar 0.336 12 609.186 600.623 636.072 1.059 1.059

Ghana 0.325 13 604.349 580.436 649.359 1.119 1.295

Sierra Leone 0.324 14 604.054 598.463 608.526 1.017 1.017

Liberia 0.304 15 594.627 597.001 597.001 1.000 1.016

Côte d’Ivoire 0.300 16 592.938 557.696 619.125 1.110 1.178

Nigeria 0.245 17 567.854 410.404 727.731 1.773 2.061

Togo 0.226 18 559.068 414.002 602.677 1.456 1.472

Guinea-Bissau 0.213 19 553.339 551.990 551.990 1.000 1.000

Viet Nam 0.208 20 551.183 403.817 798.375 1.977 2.620

Benin 0.190 21 542.579 486.579 601.623 1.236 1.294

India 0.172 22 534.773 385.498 743.722 1.929 2.196

Djibouti 0.156 23 527.295 480.416 554.850 1.155 1.155

Cameroon 0.147 24 523.082 312.068 689.956 2.211 2.439

Iran (Islamic

Republic of)

0.134 25 517.044 357.649 594.551 1.662 2.560

Guinea 0.134 26 517.011 480.625 538.424 1.120 1.509

United Arab Emirates 0.133 27 516.597 486.496 537.271 1.104 1.326

Democratic People’s

Republic of Korea

0.119 28 510.395 369.168 601.629 1.630 1.845

Lao People’s

Democratic Republic

0.117 29 509.306 489.368 539.400 1.102 1.249

Democratic Republic

of the Congo

0.113 30 507.867 426.386 630.865 1.480 1.875

Saudi Arabia 0.100 31 501.745 374.105 602.772 1.611 2.344

Sao Tome and

Principe

0.042 32 475.475 475.664 475.664 1.000 1.000

Egypt 0.036 33 472.604 454.804 504.682 1.110 1.269

Yemen 0.028 34 469.093 426.086 513.570 1.205 1.425

Thailand 0.024 35 466.970 371.127 563.575 1.519 1.898

Republic of Korea -0.029 36 442.932 374.747 476.859 1.272 1.391

Uzbekistan -0.036 37 439.572 369.474 491.421 1.330 1.618

Senegal -0.039 38 438.298 393.258 497.312 1.265 2.015

Oman -0.050 39 433.497 352.272 485.810 1.379 1.747

Cabo Verde -0.109 40 406.388 397.570 417.401 1.050 1.082

Cambodia -0.116 41 403.174 372.865 462.888 1.241 1.241

Continued on next page
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Table E.2: Global AOD in 2010

Location name Excess

burden

Excess

burden

rank

Mean

AOD

exposure

p20 AOD

exposure

P80 AOD

exposure

p80/p20

ratio

p90/p10

ratio

Central African

Republic

-0.117 42 402.609 364.299 431.582 1.185 1.301

NA -0.118 43 402.441 286.730 487.305 1.700 1.700

Afghanistan -0.121 44 400.702 335.589 401.973 1.198 1.388

Western Sahara -0.129 45 397.188 311.603 456.174 1.464 1.629

Tajikistan -0.144 46 390.276 327.683 456.403 1.393 1.458

Kyrgyzstan -0.162 47 382.302 287.899 487.359 1.693 1.883

Mali -0.166 48 380.276 334.256 414.822 1.241 1.613

Rwanda -0.171 49 378.144 368.029 400.966 1.089 1.089

Niger -0.173 50 377.227 295.893 435.561 1.472 1.761

Burundi -0.191 51 369.184 356.733 411.344 1.153 1.153

Turkmenistan -0.193 52 367.939 309.959 429.385 1.385 1.465

Myanmar -0.205 53 362.445 320.250 393.409 1.228 1.648

Burkina Faso -0.216 54 357.620 303.564 407.795 1.343 1.388

Algeria -0.229 55 351.581 147.950 204.541 1.382 1.596

Israel -0.242 56 345.721 346.908 346.908 1.000 1.000

Colombia -0.246 57 344.093 290.670 373.657 1.286 1.552

Malaysia -0.264 58 335.477 264.712 389.021 1.470 1.641

Japan -0.269 59 333.423 309.437 349.926 1.131 1.233

Chad -0.275 60 330.462 262.418 407.539 1.553 2.112

Indonesia -0.279 61 329.062 240.824 385.402 1.600 2.014

Azerbaijan -0.279 62 328.985 304.473 372.522 1.223 1.656

Uganda -0.284 63 326.744 245.289 395.805 1.614 1.789

Armenia -0.289 64 324.067 296.450 352.946 1.191 1.191

Syrian Arab Republic -0.292 65 323.019 269.709 348.202 1.291 1.536

Angola -0.293 66 322.536 205.641 477.754 2.323 2.609

Jordan -0.293 67 322.356 120.000 421.559 3.513 3.513

Eritrea -0.306 68 316.446 274.813 301.446 1.097 1.259

Lebanon -0.308 69 315.848 315.848 315.848 1.000 1.000

Venezuela (Bolivarian

Republic of)

-0.313 70 313.181 260.293 375.983 1.444 1.845

South Sudan -0.334 71 303.670 277.305 338.961 1.222 1.459

Russian Federation -0.344 72 299.203 226.002 379.103 1.677 2.303

Belarus -0.346 73 298.358 281.522 317.995 1.130 1.174

Ecuador -0.350 74 296.317 249.103 337.712 1.356 1.366

Ethiopia -0.360 75 292.012 264.896 328.376 1.240 1.588

Bonaire, Sint

Eustatius and Saba

-0.360 76 291.891 291.891 291.891 1.000 1.000

Kazakhstan -0.368 77 288.351 224.732 329.436 1.466 1.629

Sri Lanka -0.369 78 287.907 277.762 304.883 1.098 1.120

Continued on next page
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Table E.2: Global AOD in 2010

Location name Excess

burden

Excess

burden

rank

Mean

AOD

exposure

p20 AOD

exposure

P80 AOD

exposure

p80/p20

ratio

p90/p10

ratio

Cyprus -0.373 79 286.200 269.698 294.974 1.094 1.094

Suriname -0.381 80 282.335 237.388 323.379 1.362 1.374

Panama -0.383 81 281.627 243.148 330.766 1.360 1.405

Belgium -0.387 82 279.568 281.810 301.771 1.071 1.488

Poland -0.393 83 276.894 259.834 290.006 1.116 1.168

Trinidad and Tobago -0.397 84 275.181 260.036 308.829 1.188 1.291

Czechia -0.397 85 274.978 272.064 277.918 1.022 1.095

Georgia -0.398 86 274.533 214.548 308.815 1.439 1.512

Belize -0.401 87 273.265 269.179 290.550 1.079 1.153

Türkiye -0.401 88 272.982 244.503 301.157 1.232 1.417

Lithuania -0.409 89 269.621 267.599 280.714 1.049 1.252

Germany -0.412 90 268.417 246.370 291.907 1.185 1.292

Latvia -0.413 91 267.779 249.366 286.085 1.147 1.214

Switzerland -0.420 92 264.545 216.212 335.231 1.550 1.550

Netherlands

(Kingdom of the)

-0.424 93 262.608 229.095 276.623 1.207 1.468

Slovakia -0.428 94 260.832 258.843 263.547 1.018 1.031

Grenada -0.429 95 260.454 260.454 260.454 1.000 1.000

Hungary -0.434 96 258.215 240.479 273.564 1.138 1.177

Romania -0.436 97 257.135 240.783 274.301 1.139 1.194

Guyana -0.440 98 255.597 235.630 260.848 1.107 1.205

Maldives -0.440 99 255.539 223.449 304.718 1.364 1.364

Paraguay -0.440 100 255.270 241.772 256.170 1.060 1.337

Italy -0.444 101 253.369 211.530 338.032 1.598 1.681

Greece -0.452 102 250.091 239.239 263.787 1.103 1.127

French Guiana -0.455 103 248.724 238.593 258.310 1.083 1.083

Bolivia (Plurinational

State of)

-0.456 104 248.142 107.765 469.105 4.353 5.356

Republic of Moldova -0.457 105 247.883 247.711 248.001 1.001 1.001

Ukraine -0.459 106 246.656 222.327 266.884 1.200 1.304

Costa Rica -0.461 107 245.835 246.355 246.355 1.000 1.000

Puerto Rico -0.465 108 244.158 244.946 244.946 1.000 1.000

Austria -0.465 109 244.017 222.423 299.735 1.348 1.351

Bulgaria -0.469 110 242.064 217.991 262.141 1.203 1.263

Libya -0.471 111 241.281 85.000 390.648 4.596 7.031

Tunisia -0.474 112 240.124 195.124 259.774 1.331 1.562

Philippines -0.477 113 238.324 214.698 265.676 1.237 1.324

Denmark -0.484 114 235.295 220.436 263.800 1.197 1.279

Anguilla -0.486 115 234.217 234.551 234.551 1.000 1.000

Bahamas -0.495 116 230.266 183.303 255.483 1.394 1.394

Continued on next page
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Table E.2: Global AOD in 2010

Location name Excess

burden

Excess

burden

rank

Mean

AOD

exposure

p20 AOD

exposure

P80 AOD

exposure

p80/p20

ratio

p90/p10

ratio

Jamaica -0.497 117 229.271 229.271 229.271 1.000 1.000

North Macedonia -0.499 118 228.442 217.074 240.600 1.108 1.108

Nicaragua -0.500 119 228.106 200.614 267.512 1.333 1.333

Estonia -0.501 120 227.512 221.252 243.488 1.101 1.237

Brunei Darussalam -0.503 121 226.775 226.775 226.775 1.000 1.000

Dominican Republic -0.505 122 225.985 205.171 246.721 1.203 1.203

Peru -0.505 123 225.921 150.360 306.724 2.040 2.513

Somalia -0.509 124 223.871 140.671 304.921 2.168 2.913

Guatemala -0.511 125 223.228 215.362 259.368 1.204 1.564

United Republic of

Tanzania

-0.511 126 223.098 159.251 296.760 1.863 2.732

United Kingdom of

Great Britain and

Northern Ireland

-0.511 127 223.082 190.958 245.138 1.284 1.534

France -0.515 128 221.071 186.523 263.557 1.413 1.551

Antigua and Barbuda -0.516 129 220.818 220.818 220.818 1.000 1.000

Iceland -0.518 130 219.993 174.424 244.077 1.399 1.497

British Virgin Islands -0.522 131 218.175 218.175 218.175 1.000 1.000

Slovenia -0.522 132 217.887 220.413 220.413 1.000 1.092

Serbia -0.523 133 217.725 196.285 239.833 1.222 1.282

Papua New Guinea -0.524 134 217.328 195.152 229.221 1.175 1.324

Saint Lucia -0.526 135 216.015 216.015 216.015 1.000 1.000

Haiti -0.527 136 215.682 218.867 222.296 1.016 1.171

Martinique -0.528 137 215.211 215.211 215.211 1.000 1.000

Albania -0.532 138 213.665 193.875 237.533 1.225 1.260

Zambia -0.533 139 212.904 194.906 228.371 1.172 1.416

Vanuatu -0.534 140 212.481 212.332 217.411 1.024 1.024

Croatia -0.535 141 211.872 194.553 224.213 1.152 1.243

Canada -0.536 142 211.674 194.535 232.380 1.195 1.356

Montserrat -0.537 143 210.979 210.979 210.979 1.000 1.000

Finland -0.540 144 209.848 196.782 221.343 1.125 1.272

Cuba -0.544 145 208.080 195.543 222.049 1.136 1.257

Honduras -0.551 146 204.951 181.175 228.240 1.260 1.342

Montenegro -0.559 147 201.253 201.253 201.253 1.000 1.000

Morocco -0.559 148 201.068 176.979 214.546 1.212 1.382

Sweden -0.564 149 198.651 176.150 219.335 1.245 1.405

United States of

America

-0.565 150 198.414 165.615 226.184 1.366 1.715

Kenya -0.572 151 195.193 162.009 210.215 1.298 1.700

Continued on next page

61



Table E.2: Global AOD in 2010

Location name Excess

burden

Excess

burden

rank

Mean

AOD

exposure

p20 AOD

exposure

P80 AOD

exposure

p80/p20

ratio

p90/p10

ratio

Bosnia and

Herzegovina

-0.580 152 191.643 185.445 197.183 1.063 1.063

Mongolia -0.587 153 188.282 113.609 258.383 2.274 2.707

Brazil -0.589 154 187.608 147.164 200.481 1.362 2.211

Mexico -0.589 155 187.512 159.380 204.006 1.280 1.732

Marshall Islands -0.595 156 184.592 181.503 186.102 1.025 1.047

Ireland -0.600 157 182.617 160.583 190.159 1.184 1.434

Mozambique -0.603 158 181.125 139.031 231.532 1.665 2.023

Spain -0.604 159 180.803 157.026 203.778 1.298 1.658

Turks and Caicos

Islands

-0.607 160 179.385 179.194 179.194 1.000 1.000

Timor-Leste -0.609 161 178.543 171.897 193.745 1.127 1.170

Micronesia

(Federated States of)

-0.612 162 176.857 170.966 183.043 1.071 1.200

Solomon Islands -0.614 163 176.231 170.552 178.997 1.050 1.151

Portugal -0.626 164 170.721 167.203 183.161 1.095 1.145

Malawi -0.629 165 169.087 149.646 179.473 1.199 1.313

Eswatini -0.635 166 166.508 166.508 166.508 1.000 1.000

Norway -0.659 167 155.594 139.781 169.569 1.213 1.314

Botswana -0.664 168 153.210 114.018 174.323 1.529 2.086

Seychelles -0.667 169 151.727 151.217 151.217 1.000 1.000

Northern Mariana

Islands

-0.669 170 151.054 137.324 155.216 1.130 1.130

Uruguay -0.685 171 143.515 124.340 152.836 1.229 1.470

Namibia -0.685 172 143.512 89.554 232.306 2.594 2.919

South Africa -0.688 173 142.232 102.360 175.641 1.716 2.105

Kiribati -0.690 174 141.200 141.417 141.417 1.000 1.000

Greenland -0.694 175 139.666 127.995 164.399 1.284 1.713

Palau -0.695 176 139.039 137.363 142.242 1.036 1.036

Faroe Islands -0.696 177 138.608 138.608 138.608 1.000 1.000

Fiji -0.697 178 138.105 125.701 145.010 1.154 1.224

New Caledonia -0.700 179 137.022 134.252 134.252 1.000 1.128

Argentina -0.701 180 136.339 97.144 163.626 1.684 2.135

Zimbabwe -0.704 181 135.119 117.070 149.602 1.278 1.606

Wallis and Futuna

Islands

-0.724 182 125.714 125.591 125.591 1.000 1.000

Tonga -0.725 183 125.336 125.451 125.451 1.000 1.000

Cook Islands -0.731 184 122.776 122.737 122.737 1.000 1.000

New Zealand -0.737 185 120.175 103.840 134.543 1.296 1.437

French Polynesia -0.744 186 116.952 114.651 120.304 1.049 1.117
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Table E.2: Global AOD in 2010

Location name Excess

burden

Excess

burden

rank

Mean

AOD

exposure

p20 AOD

exposure

P80 AOD

exposure

p80/p20

ratio

p90/p10

ratio

Madagascar -0.753 187 112.744 74.526 160.918 2.159 3.361

Falkland Islands

(Malvinas)

-0.755 188 111.690 108.658 116.828 1.075 1.148

Australia -0.756 189 111.140 97.169 125.867 1.295 1.489

Chile -0.770 190 104.689 82.714 111.505 1.348 1.572

Lesotho -0.810 191 86.471 90.216 90.216 1.000 1.408

Note: A rank of 1 indicates that the location has the highest excess burden among the other locations in the geographic category. Lo-
cations are divided into three geographic units, regions, sub regions, and countries. Results are based on within-country distributions
of cell-level population distribution as well as cell-level air pollution by aerosol distributions. Atmospheric pollution by aerosols is
important to human health and well-being because higher amounts of aerosol particles degrade visibility and can also damage health,
especially when there is a higher concentration of PM2.5 particles that are smaller than 2.5 micrometers. Aerosol Optical Depth (AOD)
is a satellite-based measure that captures the composition, sizes, and concentration of aerosols by measuring the magnitudes of at-
mospheric light reflection and absorption across the globe. AOD < 0.1 indicates crystal clear sky and AOD of 1 indicates very hazy
conditions.
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