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Abstract

This paper provides the first global subnational analysis of the Environmental Kuznets
Curve (EKC), relating GDP per capita and air pollution by aerosol. We use satellite data
for Aerosol Optical Depth (AOD), a proxy for air pollution, and merge it with subnational
GDP per capita for 2010 and population estimates. Our polynomial and quantile regres-
sions confirm a robust inverted U-shaped relationship between income and pollution glob-
ally. However, we find significant heterogeneity across the air pollution distribution, with
lower pollution quantiles exhibiting a flatter curve than higher pollution ones. Estimated
Pollution-GDP elasticities confirm the overall EKC trend globally, with poorer regions ex-
hibiting positive elasticities, while richer regions show negative magnitudes. However,
considerable variation exists within regions, emphasizing that the development-pollution
trajectory is not uniform.
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1 Introduction

The Environmental Kuznets Curve (EKC) indicates an inverted U-shaped relationship be-
tween economic development and environmental degradation. Initially, as income rises, en-
vironmental degradation increases, but decreases when a certain income level is reached, the
turning point. After reaching this income level, increases would lead to reductions in envi-
ronmental degradation. This dynamic is theoretically driven by the elasticity of substitution
between consumption and environmental quality (Shibayama and Fraser 2014). Due to its the-
oretical importance and policy implications, the EKC has been a central topic across various
disciplines, including economics (Grossman and Krueger 1991; Jayachandran 2022), energy
studies (Cohen et al. 2019; Mohsin et al. 2022) , and environmental sciences (Roy Chowdhury
and Moran 2012; Stern and Dijk 2017).

Despite the extensive empirical estimation of the EKC across global, regional, and national
scales, these studies suffer from data limitations that limit these papers’ results. Specifically,
the majority of these analyses did not incorporate proper population weights to account for the
actual exposure of people to air pollution. Moreover, the use of national-level data does not
allow authors to explore within-country heterogeneity, which may hide important variations
in the development-environment relationship at a more granular, subnational level. Finally,
papers have focused on non-aerosol air pollution — O3, and CO; — indicating a lack of EKC
papers that investigate the relationship between income and air pollution by aerosol - PM and
AOD (Stern and Dijk 2017). This specific dimension of air pollution is important to investigate,
as this is related to health consequences for populations.

The contributions of this paper are threefold. First, it is the first to document the existence
of an EKC globally using subnational income information. Second, we add to the literature on
EKC by relating income and air pollution by aerosol as a measure of environmental degrada-
tion. Even though there is a large set of papers studying the relationship between development
and environmental degradation under an EKC framework, few papers investigate the dynam-
ics of air pollution as income grows. We use AOD as a measure of aerosol pollution, as this is a
predictor of PM2.5 and other hazardous factors for environmental degradation, such as smoke
and light reduction (Hao et al. 2024; Hu 2009; Tanasa et al. 2025). Third, this is the first work
to estimate the heterogeneous correlations that exist between environmental degradation and

economic development across the global location categories. We do this by providing a quan-



tile regression approach and using its results to estimate air pollution by aerosol elasticities for
each subnational unit in our dataset.

To estimate our global EKC, we use satellite information, which provides granular infor-
mation on Aerosol Optical Depth around the globe and population estimates. We merge our
population-weighted air pollution exposure measure with subnational GDP per capita to in-
vestigate the relationship between economic development and environmental degradation.
We use two methodological approaches to verify the existence of the global correlation. First,
following the long literature on EKC estimations, we fit polynomials from 1 to 4 degrees to our
dataset, allowing us to estimate turning points and curvature of the EKC. Second, to explore
possible heterogeneities across the distribution of subnational unit air pollution exposure, we
use quantile regressions to correlate economic development and environmental measures for
different parts of the distribution. This allows us to use estimated parameters to recover elas-
ticities for each subnational unit and average subregional measures across the globe.

Our results confirm the existence of a U-inverted relationship between GDP per capita and
Air pollution by aerosol, which is consistent across polynomial non-linear fits and regional,
subregional, country, and subnational samples. Our quantile regressions suggest heterogene-
ity in this relationship, with lower parts of the air pollution distributions presenting a flatter
curve, which is steeper for higher distribution portions. The estimated elasticities follow a
theoretical expected pattern around the world, with poorer regions showing average negative
elasticities that turn less negative and eventually positive for richer regions. However, there is
considerable variation within regions, i.e., average regions with negative elasticities containing

subnational units with positive elasticities and vice versa.

2 Data

2.1 Air pollution by aerosols as measured by AOD

Aerosols are ensembles of suspended particles present in the Earth’s atmosphere. Atmospheric
pollution by aerosols is important to human health and well-being because higher amounts
of aerosol particles degrade visibility and can also damage health, especially when there is
a higher concentration of PM, 5 particles that are smaller then 2.5 micrometers (Jacobsen and
Hanley 2009). Aerosol Optical Depth (AOD) is a satellite-based measure that captures the com-

position, size and concentration of aerosols by measuring the magnitude of atmospheric light
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reflection and absorption across the globe (Lenoble, Remer, and Tanre 2013). Scaled between
0 to 1, an AOD value that is less than 0.1 indicates crystal clear sky and clear satellite to earth
surface visibility. In contrast, an AOD value close to 1 indicates very hazy conditions (NASA
Earth Observatory 2024).

We use AOD measurements based on images collected by the TERRA satellite with its
MODIS instruments (Xiong et al. 2020), and we access the data via the NASA EarthData data
collection, using the OpenDAP protocol (Cornillon, Gallagher, and Sgouros 2003). On each day
in a particular year, tracking along TERRA's orbital path across the globe, we download AOD
data at a spatial resolution of 3km x 3km and at all available 5 minute temporal resolution
units. For each day, this process generates a vector of latitude-, longitude-, and time-specific
AOD measurements.

Within each 1° x 1° longitude-latitude grid (cell), we compute average daily AOD values
based on the subset of the daily AOD measurement vector that fall within the geographical
boundaries of each cell on that day. Repeating this across days during a year, we generate for
each cell, a vector of average daily AOD measurements. During each year, the length of these
cell-specific daily average AOD vectors is equal to the number of days in which valid AOD
measurements are available for a particular cell. On some days, there might be no cell-specific
AOD measurements due to high cloud fraction and invalid reflectance assumptions (Wang
et al. 2021) or due to limited overlaps between the cells and the daily orbital path (Xiong et
al. 2020).

Using the cell-specific vectors of average daily AOD measurements from a year, we com-
pute annual average AOD exposures for each cell, first averaging over the days in which cell-
specific measurements are available, and then separately averaging over all days after comple-
menting the observed averages with interpolated and extrapolated estimates on days without
cell-specific measurements. Due to the concentration of missing AOD data in regions with
the least population, our population-weighted AOD distributional results based on the raw
data and interpolated and extrapolated data are very similar. Our global inequality results

presented in the text are based on annual averages of the raw data.!

1. See Appendix Figure E.1for a visualization of the number of days in 2010 with AOD measurements across
global cells.



2.2 Global gridded population data

In conjunction with the cell-specific AOD data, we generate cell-specific global population esti-
mates based on the Gridded Population of the World Version 4 (GPWv4) dataset from the Cen-
ter for International Earth Science Information Network (CIESIN Columbia University 2018).
The GPWv4 data contains population statistics from 241 global economies. Data is sourced in
most cases from national and local statistical agencies, and when that is not available, sourced
from the United Nations.

The gridded GPWv4 data provides total population estimates at 30 arc-second grids (~ 1km
at the equator), and is globally disaggregated from official population data at the smallest ad-
ministrative level available. As an illustration, the dataset contains disaggregated population
data from 316,461 Brazilian sectors, 43,878 Chinese townships, 5,967 Indian sub-districts, 774
Nigerian local government areas, and 10,535,212 US census blocks. To allow for the calculation
population-weighted AOD data, we aggregate the GPWv4 population estimates up to 1° x 1°
longitude-latitude grid, which matches up with the resolution of our cell-specific annual av-
erage AOD exposures data.

Due to variabilities in census survey and population register data availability, GPWv4 pop-
ulation data are sourced between the years 2001 and 2015, with the center of the calendar year
distribution at around 2010. Specifically, data from 27% of the economies are based on 2010
census and population register data, 62% and 83% of the economies” data come from within
one and three years of 2010, and about 8% of the economies have data sourced from outside
of four years of 2010. To appropriately match up the time-frame of the population and AOD

data, we use cell-specific annual average AOD exposure data in 2010.

2.3 Subnational GDP data

We complement global measurements of air pollution by aerosols and population with data
on the relative levels of economic development as captured by GDP per capita. Specifically,
we use national and subnational from the Gridded global datasets for Gross Domestic Product
(Kummu, Taka, and Guillaume 2018), which is based on subnational GDP per capita data from
Gennaioli et al. (2013). The GDP per capita values are adjusted for purchasing price parity and
based on 2005 international dollars.

Gennaioli et al. (2013) collected subnational GDP data from 1569 subnational first-level or



equivalent administrative units from the largest 110 economies up to 2010. These economies
accounted for 97% of global GDP in 2010. Kummu, Taka, and Guillaume (2018) augmented the
dataset with national GDP data from economies without subnational data, filling in missing
subnational GDP values by interpolating based on geographically and temporally neighboring
data-points around missing values, and extended the dataset time-frame to 2015 by extrapo-
lating based on trends up to 2010.

Considering jointly the temporal availability of AOD, pollution, and GDP data, we use the
2010 subnational and national GDP per capita estimates from Kummu, Taka, and Guillaume

(2018).

3 Empirical Strategy

3.1 Polynomial fit

To investigate the relationship between economic development and air pollution, we employ
an Environmental Kuznets Curve (EKC) framework. The EKC hypothesis states that environ-
mental degradation initially worsens as a country’s income per capita increases, but eventually
reaches a turning point after which environmental quality improves with further economic
growth. This results in an inverted U-shaped relationship, first proposed to explain the rela-
tionship between economic development and inequality.

We fit different polynomial degree equation to capture an traditional EKC and other po-
tential non-linear relationships, we specify a quartic (fourth-degree polynomial) model. Our
support sample consists goes from 0.05 to 0.95 of our GDP per capita distribution, excluding
extremes that may lead to non-smooth shift to the fitted curves. TWe use population-weighted
regressions to ensure that regions with larger populations have a proportionally greater influ-
ence on the estimated coefficients. Our formal specification for the fourth degree polynomial

is as follows:

AODiq =+ Y PBaln(GDP;)? + e; 1)
d

Where i indexes the geographical unit of observation, which varies between different levels of
sample aggregation such as Region, Subregion, Country, and Subnational units. d indicates the

polynomial degrees, which are from 1 to 4. AOD; is the population-weighted average Aerosol



Optical Depth, measuring air pollution by aerosol exposure. In(GDP; ) is the natural logarithm
of real GDP per capita, our measure of economic development. 34 are the coefficients to be
estimated, which jointly determine the shape of the curve. e€; is the stochastic error term,
assumed to be independently and identically distributed.

The shape of the curve, and thus the validity of the EKC hypothesis, is determined by the
signs and statistical significance of the fd coefficients. For non-linear polynomials, (3; indi-
cates how GPD and AOD are related, expected to be positive according to the EKC theory.
If an inverted U-shaped curve exists, 3, is negative, indicating a decreasing relationship be-
tween environmental degradation and income. A key estimation performed by the literature
on EKC analysis is the identification of turning points, which indicate income levels at which
the marginal effect of income on pollution changes sign and the curve starts to fall. We cal-
culate these turning points (TP4) for non-linear approaches by taking the first derivative of
Equation (1) with respect to the log of GDP per capita and setting it to zero. The derivative is

as follows:

dAODiq4

TPa = 9 In(GDP;)

=0 )

The GDP; that satisfies Equation (2) is the income turning point for a polynomial fit with

degree d. We additionally provide confidence interval estimates for this estimate turning point.

3.2 Quantile Regression

The polynomial approach estimates the average relationship between income and air pollu-
tion. However, the effect of economic growth may differ significantly across the AOD distribu-
tion. To explore this heterogeneity, we employ a conditional quantile regression approach. This
method allows us to model the Environmental Kuznets Curve (EKC) not just for the mean, but
for various quantiles (1) of the conditional Air pollution distribution. This reveals whether the
income-pollution relationship is different for cleaner (lower quantiles) versus more polluted
(higher quantiles) observational units, conditional on their income. We estimate a quadratic

model for each quantile T € {0.1,0.2,...,0.9} as follows:

Q- (Pollution; | In(GDP;)) = &¢ 4 B1 In(GDP;) + B2 In(GDP;)? + €y 3)



Where, Q- is the T-th conditional quantile of pollution for unit i, given its level of GDP per
capita. The coefficients &, 31, and Por are specific to each quantile T and are estimated
separately for each quantile.

This approach allows us to address several key questions. First, by comparing the coef-
ficient estimates across different quantiles, we can formally test for differences in the EKC’s
shape across the pollution distribution. Second, we can calculate quantile-specific turning
points (TP+) to determine if different percentiles of the air pollution distribution experience
their pollution levels peak at different income stages. Using the first derivative condition, we

can see that the turning point for a given quantile (TP.) is found at the income level where:

BlT

TPx = In(GDP) = — 3
2T

(4)

Similarly to before, the income level which satisfies this condition is the turning point for the
conditional quantile group. We use the estimated parameters to derive income elasticities for
each subnational unit by associating it with its closest estimated quantile curve and using

predicted level of AOD and coefficients to measure the following elasticite equation:

_ 9AOD; _ GDP;

ni = aGDPi X AODi = (Bl’r +2[32T) X

GDP;
AOD;

(5)

This provides understanding of how economic growth impacts pollution levels for different

parts of the distribution and under varying initial environmental conditions.

4 Results

4.1 Polynomial fit results

Our polynomial analysis reveals a robust cubic pattern for the Environmental Kuznets Curve
(EKC) on a global scale and can be seen in Figure 1a. This finding is stable across various
group samples and non-linear specifications, not changing the U-inverted pattern. The cubic
relationship between income and pollution holds consistently whether using regional, subre-
gional, country, or subnational units. Table 3 shows the estimated coefficients for polynomial
specifications using subnational observations. The linear relationship in column 1 is negative,
suggesting that income increase reduces air pollution exposure. However, when assuming

non-linear functional forms, this coefficient is positive. The second key information is the sign

7



of the squared log GDP, which is negative in the second column. This reveals that the global
curve that relates GDP and air pollution has the inverted U-shape as predicted by the EKC
theory. The fitting performance does not change with higher degrees, as R? is similar across
specifications.

Table 2 shows how the quadratic polynomial fits across different location aggregation sam-
ples. The results show that as we increase the number of observations with finer location
categories, from the regional to the subnational level, the estimated EKC becomes flatter. This
can be seen in the decrease of the coefficient magnitude from -0.53 using continents to -0.12
using subnational units. This suggests that while the overall shape persists, the magnitude of
the income effect is lower as we account for within-location group variations. The use of finer
datasets, as the subnational data, is important to capture significant within-location variation,
allowing to capture more precise estimates.

Table 2 also presents our estimated turning points, where the marginal effect of income on
pollution begins to decline, ranging from an income level of $ 6,727 using continents to $4,948
per capita when using subnational units. The confidence intervals are more precise when
increasing granularity, but the estimate intervals are consistent across samples. We find that the
cubic specification is sufficient to capture the data variation. Adding higher-order polynomial
terms does not significantly improve the model’s fit, indicating that the cubic model provides

an adequate and parsimonious representation of the global relationship

4.2 Heterogeneity in Regional and Country-Level EKCs

Although the pooled global polynomial analysis provides a clear and consistent pattern of an
EKGC, this finding is not consistent within subregions. Figure 2 visualizes what we obtained
for each subregional when using a quadratic fit for subnational units. The expected inverted
U-shaped curve is not consistent across regions. We find U-shaped, inverted U-shaped, and
linear curves for different regions. The country EKC estimations are available in our appendix
results, and show the same inconsistency.

This divergence implies that the global EKC is largely an aggregation phenomenon. It rep-
resents an average trend that may not accurately describe the developmental trajectory of any
individual subregion or country. The lack of a consistent pattern at the finer levels may indi-
cate that different regions of the world are situated in different parts of the EKC path. This is
more evident if we consider the concentration of subunits by subregional income. Units are
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clusters on the left of the turning point for observations in poorer subregions, whereas richer

subregions tend to have units on the right side of the curve.

4.3 Quantile regression results

Figure 3 and table 3 analyze the relationship between subnational air pollution by aerosol
(relative to the global mean) and subnational log GDP per capita using a conditional-quantile
quadratic model, providing evidence consistent with the Environmental Kuznets Curve (EKC)
hypothesis. The results reveal that the curvature of the EKC is highly heterogeneous across the
distribution of air pollution.

The estimated curves consistently show an inverted U-shaped relationship, but their shape
varies dramatically from the lowest to the highest air pollution quantiles. This is demonstrated
by the coefficient for the Log GDP per capita squared term, which measures the rate of decline
post-peak. For the 10th quantile (low pollution regions), this coefficient is a relatively mild
—0.036. In stark contrast, for the 90th quantile (high pollution regions), the coefficient is —0.185
(five times larger in magnitude). This indicates that the inverted U curve is much steeper and
more sharply defined for regions with historically higher air pollution levels.

The coefficient for Log GDP per capita (the initial ascent) also shows a strong quantile ef-
fect. This coefficient is only 0.613 for the 10th quantile, but rises sharply to 3.252 for the 90th
quantile. This result suggests that as low-polluting areas develop, the initial rise in aerosol
pollution is relatively slow, while regions that are already highly polluted experience a signifi-
cantly more rapid escalation in pollution as their economic output increases up to the turning
point. This difference highlights that the penalty for initial development is much greater for
those areas that are already environmentally burdened. The visual evidence in the figure sup-
ports this, as the dashed lines (higher quantiles) exhibit a steeper positive slope than the solid
lines (lower quantiles) before the peak.

Despite the significant heterogeneity in the curve’s curvature and initial slope, the GDP
turning point estimates remain relatively consistent across the distribution. The estimated
turning points—the GDP per capita level at which pollution begins to decline—range from
a low of $3,112 (20th quantile) to a high of $6,646 (90th quantile). The text’s specified range
from $5,403 (10th) to $6,646 (90th) also emphasizes this clustering. The narrow range suggests
that the economic threshold required to shift from a pollution-intensive development path to a
cleaner one is remarkably similar for subnational units, irrespective of their baseline air quality
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status.

In summary, the conditional-quantile analysis shows that high-pollution subnational re-
gions are characterized by a more intense relationship with economic growth: they experience
a faster rise in pollution, but also a sharper potential decline after the EKC turning point is
reached. The stability of the turning point estimates, however, suggests that the underlying
mechanism that triggers environmental improvement may be tied to a universal level of eco-

nomic maturity across diverse subnational contexts.

4.4 Elasticities

To provide a more granular understanding of the income-pollution relationship, we move be-
yond the overall shape of the curve and calculate the pollution-GDP point elasticity for each
observational unit. The elasticity, n;, measures the percentage change in pollution (AOD) re-
sulting from a one percent change in GDP per capita. This allows us to assess the immediate
marginal impact of economic growth.

Our elasticity estimation leverages the results from the quantile regressions, and follows
three steps. First, for each subnational unit 7, we identify its closest conditional quantile curve
based on its observed pollution and GDP levels. Second, we select the corresponding esti-
mated coefficients (311 and P2) from that specific quantile, T. Finally, using these coefficients,
we estimate the point elasticity for each unit.

The point elasticity is formally derived from our quadratic EKC specification following
Equation (5). Theoretically, the Air pollution elasticity to income is the product of the marginal
effect of GDP on AOD and the ratio of GDP to AOD. Which can be interpreted as the percent-
age variation in Air pollution at the subnational level induced by 1% increase in income. We
estimate the subnational unit elasticities and aggregate these units into subregions to derive
statistical moments for each of them.

The distribution of subregional and subnational estimated point elasticities can be seen in
Figure 4. The results reveal a pattern consistent with a global Environmental Kuznets Curve.
On average, the elasticities exhibit a clear trend with respect to income levels across subregions.
Low-income regions are characterized by a positive Pollution-GDP point elasticity (ni > 0) In
these areas, economic growth is still associated with rising pollution levels, indicating that
they are on the upwards sloping side of the EKC. In contrast, high-income regions show a
negative Pollution-GDP point elasticity (n; < 0). For these units, increases in GDP per capita
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are associated with reductions in pollution, placing them on the downwards sloping side of
the EKC.

Despite this clear global trend, the results highlight considerable heterogeneity within sub-
regional groups. At any given level of regional average GDP per capita, there is dispersion of
elasticities, underscoring that the relationship between economic growth and environmental

quality is not uniform within these location groups.

5 Conclusion

In this paper, we investigate the existence of a global Environmental Kuznets Curve (EKC)
using regional, subregional, national, and subnational information on air pollution by aerosol,
population estimates, and GDP per capita. We add to the literature by presenting the first
global population weight investigation of the EKC curve at the subnational level. The first
paper to use an Aerosol Optical Depth as a measure of air pollution by aerosol to investigate
the global relationship between income and air pollution by aerosol at the subnational level.
We also add to the EKC literature by providing the first quantile regression analysis of the
relationship at the subnational level, and estimate subnational pollution-income elasticities for
the all globe.

Our results suggest the existence of a global EKC, an inverted U-shaped correlation be-
tween income and pollution. This relationship is consistent across different polynomial degree
specifications and geographical categorization of the globe. The subnational results indicate a
flatter curve, but the same EKC pattern exists.

Quantile regressions show that this world pattern is considerably different for quantiles of
the pollution by aerosol distribution. EKC curves for lower quantiles are flatter than the global
estimate EKC, and higher quantiles have steeper curves.

The estimated elasticities add to the evidence of an EKC relationship around the globe. This
is indicated by the decrease in Subregional average Pollution-GDP elasticities with income.
Poorer regions do have positive elasticities, which turn positive in richer regions. However,

there is heterogeneity within regions.
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Figure 1: Global Polynomial fitted curves
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Notes: These panels show the fitted polynomial curves using subnational units log GDP per
capita and Air pollution by aerosol burden. Panel A shows the quadratic, cubic, and quartic
fitted curves. Panel B shows different regions of the world.
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Table 1: Weighted Regression Results: Air Pollution Burden vs Log(GDP) polynomial terms

Dependent variable: Air Pollution Burden

(1) 2 (3 “@

Log(GDP) -0.120%** 2.105%** 4.874%* -49.971%**
(0.008) (0.115) (1.156) (8.696)
Log(GDP)? -0.124%+* -0.440*** 9.043***
(0.006) (0.131) (1.496)
Log(GDP)? 0.012** -0.710%**
(0.005) (0.114)
Log(GDP)* 0.020%**
(0.003)
Constant 1.086*** -8.794*** -16.785*** 100.969***
(0.077) (0.512) (3.358) (18.807)
Observations 3,712 3,712 3,712 3,712
R? 0.052 0.140 0.141 0.150
Adjusted R? 0.051 0.139 0.140 0.149
Residual Std. Error 0.009 (df = 3707) 0.008 (df = 3706) 0.008 (df = 3705) 0.008 (df = 3704)
F Statistic 201.590*** (df = 1; 3707) 300.985*** (df = 2;3706) 202.848"** (df = 3; 3705) 163.878"** (df = 4; 3704)

Note: This table reports the regressions using polynomial terms using the subnational unit
sample. Each column corresponds to a different polynomial degree fit estimated. Standard
errors are reported in parentheses.
*p < 0.10, **p < 0.05, ***p < 0.01.
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Table 2: Quadratic polynomial regression by different location aggregation groups

Dependent variable: Population-weighted air pollution by aerosol.

Region Subregion Country Subnational
M 2 3) 4
Log(GDP) 9.416* 3.537** 2.770*** 2.105%**
(2.567) (1.382) (0.446) (0.115)
Log(GDP)? -0.534* -0.204** -0.162*** -0.124***
(0.141) (0.076) (0.025) (0.006)
Constant -41.253* -15.190** -11.630*** -8.794***
(11.624) (6.246) (2.005) (0.512)
Turning point (GDP per capita, 2010 US Dollars) 6,727 5,897 5,037 4,948
Turning point 95 confidence interval [5,3158,513] [3,5639,761] [3,9826,371] [4,565 5,363]
Observations 5 22 170 3,712
R? 0.917 0.351 0.298 0.140
Adjusted R? 0.833 0.283 0.289 0.139

Note: This table reports the quadratic regression for different aggregation samples. Each column cor-
responds to a different location agqregation sample. Standard errors are reported in parentheses. The

GDP turning point is calculated as exp (—2%), where (31 and (3, are the coefficients on log GDP and
its square. The 95% confidence intervals for the turning points are reported in brackets.
*p < 0.10, **p < 0.05, ***p < 0.01.
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Figure 2: Quadratic fitted curves by subregion
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Air Pollution burden. Subregions are ordered from the poorest (upper left) to the richest (bottom right).

17



Figure 3: Quantile estimated curves
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Table 3: Global conditional-quantile quadratic association between population-weighted air
pollution by aerosol and GDP per capita (PPP, 2010 US Dollars) at subnational aggregations.

Dependent variable: air pollution by aerosol

10th  20th 30th 40th 50th 60th 70th 80th 90th
(6] (2 3) %) ®) (6) (7) (8) )
Log(GDP) 0.613*  0.656*  1.049***  1.194**  1.590%*  1.736**  2.164**  3.074***  3.252%**
0.326) (0.390)  (0.166)  (0.337)  (0.440)  (0.596)  (0.286)  (0.490) (0.902)
Log(GDP)2 0.036**  -0.041* -0.063*** -0.072*** -0.095** -0.106*** -0.133*** -0.182***  -0.185***
0.017) (0.020) (0.009)  (0.018)  (0.023)  (0.031)  (0.016)  (0.027) (0.054)
Constant 3148 2975  -4.6024F  -5.033"**  -6.630""* -6.920** -8371*** -12.329%** -13.352***
(1.526) (1.845) (0.738)  (1.587)  (2.073)  (2.852)  (1.250)  (2.175) (3.743)
GDP turning point 5403 3,112 4,136 3,783 4316 3,654 3,508 4,664 6,646
Turning point95CI  [2,228  [667  [3172  [1,987  [2400  [1,539 [2,738 [3,781 [4,282
13,103] 14,517] 5391]  7,204] 77631  8,672]  4,494] 5,754] 10,315]
Pseudo R2 0.002  -0.108  0.012 0.093 0.085 0.131 0.123 0.169 0.027
Observations 3712 3712 3712 3,712 3,712 3,712 3,712 3,712 3,712

Note: This table reports weighted quantile regression results of air pollution burden on log GDP and
its squared term, estimated at the 10th to 90th percentiles of the conditional distribution. Each column
corresponds to a different quantile of the outcome variable. Standard errors are reported in parentheses.

The GDP turning point is calculated as exp (—%), where (31 and (3, are the coefficients on log GDP

and its square. The 95% confidence intervals for the turning points are reported in brackets. Pseudo-R?
values correspond to each quantile regression.
*p < 0.10, **p < 0.05, ***p < 0.01.
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Figure 4: Estimated subnational GDP-Pollution elasticities by subregion
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Notes: The figure plots subnational elasticities by subregions ordered from the poorest to the richest
region. Colors sign different continents around the globe. Subregional moments are plotted in a boxplot
style, presenting mean, 75th, and 25th percentiles.
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ONLINE APPENDIX

Unfolding the Greener Path:
A Global Subnational Analysis of the Environmental Kuznets Curve
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A Additional Figures and Tables

Figure E.1: Number of days with AOD data available for each 1° x 1° longitude-latitude grid,
2010

Notes: The figure presents the geographical and temporal availability of Aerosol Optical Depth (AOD)
data, our global proxy for ambient particulate matter pollution exposures. For our analysis, we down-
load raw AOD data available at 3km x 3km resolution and compute average daily AOD on each day of
the year with available AOD measurements for each 1° x 1° longitude-latitude grid (cell). The figure
shows the number of days in 2010 during which AOD data was available within each cell. The days are
represented through shades of purple and pink from the darkest purple (1 day) to the lightest pink (al-
most all days in the year); days with zero data are represented by a gray color. Due to the concentration
of missing AOD data in regions with the least population, our population-weighted AOD distributional
results based on the raw data and interpolated and extrapolated data are very similar. Our global in-
equality results presented in the text are based on annual averages of the raw data.
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Figure E.2: Population shares in areas with no raw AOD measurements 1° x 1° longi-
tude-latitude grid, 2010
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Notes: The figure plots the population shares of areas for which no AOD measurements exist. The share
of global population represented by all colored areas amounts to just 0.00602 with 99.8% of cells in this
section having a population share below the mean population share (0.000128) in areas with existing
AOD measurements. Similarly, 85.8% of cells in this area have values below the median population
measure (0.0000069) in areas for which AOD values exist. This means that above-global-average AOD
measurements would have to had existed in these areas for our global population-weighted AOD mean
to remain the same, otherwise our global mean would be lower than what was calculated meaning
relative burden measures can be considered conservative estimates.
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Figure E.3: Daily-averaged-then-annualized AOD values for each 1° x 1° longitude-latitude
grid, 2010

Notes: The figure presents the Aerosol Optical Depth (AOD) values for each coordinate grid, globally,
as computed by first averaging collected values in a given day for a given coordinate, for each day, then
annualized across daily data, for 2010. Darker shades of orange indicate higher levels of AOD

Figure E.4: GPWv4 population shares for each 1° x 1° longitude-latitude grid, 2010

Notes: The figure presents raw population figures as part of SEDAC’s GPWv4 population data collec-
tion, for 2010. The units of measurements are cell-level global population shares for every 1° x 1° grid.
Darker shades of blue indicate a higher population share.
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Subnational Air Pollution by Aerosol and Average by country

Notes: This plot shows the quadratic fitted curves for different asian countries. The fitted curve was
estimated using 80 percent of the subnational units in each country. Subregions are ordered from the
lowest to the richest region. X-axis shows subnational Log GDP per capita, and the Y-axis shows Air

Figure E.5: Quadratic fitted curves for Asian countries
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Pollution burden. Countries are ordered from the poorest (upper left) to the richest (bottom right).
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Figure E.6: Quadratic fitted curves for African countries

Region: Africa
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Notes: This plot shows the quadratic fitted curves for different african countries. The fitted curve was
estimated using 80 percent of the subnational units in each country. Subregions are ordered from the
lowest to the richest region. X-axis shows subnational Log GDP per capita, and the Y-axis shows Air

Subnational Log GDP per capita by Aerosol and Average by country

Pollution burden. Countries are ordered from the poorest (upper left) to the richest (bottom right).
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